Part I

Answer 30 questions from this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Write your answers on a separate sheet. Where applicable, answers may be left in terms of π or in radical form.

- 1 Express the sum of (2y + 3) and (3y 4) as a binomial.
- 2 Solve for r: r 0.2 = 1.8
- 3 There are 3 entrances to a school and there are 2 stairways that go to the second floor. In how many different ways can a student enter the school and go to the second floor?
- 4 Express, in radical form, the length of the hypotenuse of a right triangle whose legs have lengths of 1 and 3.
- 5 Solve for x: 2(x + 3) = x + 7
- 6 In the diagram below of $\triangle ABC$, $m \angle A = 70$ and $m \angle B = 30$. Find the measure of exterior angle BCD.

7 As shown in the accompanying diagram, \overrightarrow{AB} and \overrightarrow{CD} intersect at point E. If the degree measures of vertical angles AED and CEB are represented by (3x + 20) and (8x - 5), find the value of x.

- 8 The measures of two complementary angles are in the ratio 2:3. Find the measure of the *larger* angle.
- 9 If the mean of four positive integers is exactly 10, find the sum of the four numbers.
- 10 Find the value of the expression $3x^3$ when x = -2.

11 Solve for x:
$$\frac{x+1}{8} = \frac{1}{2}$$

- 12 Factor: $4x^2 9$
- 13 Find the slope of the line whose equation is y = -2x 4.
- 14 Thirty percent of what number is 12?
- 15 Let p represent "I passed the test" and let q represent "I feel proud." Using p and q, write in symbolic form, "I did not pass the test and I do not feel proud."
- 16 There are 14 girls and 15 boys in a class. If the teacher calls on one student at random, what is the probability the student called on is a girl?
- 17 A rectangle has an area of 16. If the length of the rectangle is doubled and the width remains the same, what is the area of the new rectangle?
- 18 A box of plant food recommends adding 1 1/2 ounces of plant food to every 4 quarts of water. How many ounces of plant food should be added to 16 quarts of water?

HIGH SCHOOL MATHEMATICS: COURSE I—JANUARY 1984 (3)

19 Express as a single fraction:
$$\frac{x}{3} + \frac{x}{5}$$

- 20 Express the product (2x 5)(4x + 5) as a trinomial.
- 21 Find the mode of the following group of num-8, 8, 9, 10, 11 bers:

22 Factor:
$$x^2 - x - 12$$

- 23 The inverse of a statement is $p \to \sim q$. What is the statement?
- 24 Solve the following system of equations for x:

$$\begin{array}{cccc}
x & + & y & = & 7 \\
x & - & y & = & 1
\end{array}$$

Directions (25-34): For each question chosen, write on the separate answer sheet the numeral preceding the word or expression that best completes the statement or answers the question.

- 25 If x represents a number, which expression represents a number which is 5 less than 3 times x?
 - (1) 5x 3

(3) 3x - 5

(2) 5 - 3x

- $(4) \ 3 5x$
- 26 Which is logically equivalent to $p \to q$?
 - $\begin{array}{cccc} (1) & \sim q \rightarrow & \sim p \\ (2) & \sim p \rightarrow & \sim q \end{array} \qquad \begin{array}{cccc} (3) & q \rightarrow & p \\ (4) & p \wedge & \sim q \end{array}$
- 27 The length of a rectangle is three times its width. If the width is represented by x, which expression represents the perimeter of the rectangle?
 - (1) 6x

(3) $3x^2$

(2) 8x

(4) 4x

28 The accompanying diagram shows the graph of which inequality?

- $\begin{array}{lll} (1) & y > x 1 \\ (2) & y \ge x 1 \end{array}$
- (3) y < x 1
- $(4) \ y \leq x 1$
- 29 The graph of the equation y = 5 intersects the y-axis at the point whose coordinates are
 - (1) (-5,5)(2) (0,5)
- 30 If the area of a circle is 16π , the circumference of the circle is
 - (1) 8π

(3) 4π

(3) (5,0)

(4) (5,5)

(2) 8

- (4) 4
- 31 If x = 1 and y = -2, which expression has a value of 3?
 - (1) x + y

(2) x - y

- (3) xy(4) y x
- 32 The length of an edge of a cube is represented by 5x. Which expression represents the volume of the cube?
 - (1) $10x^2$

(3) $5x^3$

(2) $25x^2$

- (4) $125x^3$
- 33 Which point does not lie on the graph of the equation 2x + y = 3?
 - (1) (-1,-1)

(3) (0,3)

(2) (-1,5)

 $(4) (\frac{1}{2}, 2)$

HIGH SCHOOL MATHEMATICS: COURSE I—JANUARY 1984 (5)

34 Patty needs a total of \$80 to buy a bicycle. She has already saved \$35. If she saves \$10 a week from her earnings, what is the *least* number of weeks she must work to have enough money to buy the bicycle?

(1) 5

(3) 3

(2) 8

(4) 4

Directions (35): Use compasses and straightedge. Leave all construction lines on the answer sheet.

35 On the answer sheet, construct triangle A'B'C' congruent to $\triangle ABC$, using $\overline{B'C'}$ as one side.

Part II

Answer four questions from this part. Show all work unless otherwise directed.

36 Solve the following system of equations graphically and check:

$$\begin{array}{cccc} x + y & = & -3 \\ 2x - y & = & 6 \end{array} [8,2]$$

37 One number is 4 times another. The sum of the two numbers is less than 12. Find the largest possible values for the two numbers if both are integers. [Only an algebraic solution will be accepted.] [6,4]

- 38 A garden is in the shape of a square. The length of one side of the garden is increased by 3 feet and the length of an adjacent side is increased by 2 feet. The garden now has an area of 72 square feet. What is the measure of a side of the original square garden? [Only an algebraic solution will be accepted.] [5,5]
- 39 In the diagram below, $\triangle ABC$ is inscribed in circle O. Triangle ABC is isosceles with $\overline{AB} \cong \overline{BC}$. Line EF, which contains point B, is parallel to line AC. The degree measure of arc BC is 150.

Find:

- a the measure of $\angle BAC$ [2]
- b the measure of $\angle EBA$ [2]
- c the measure of $\angle ABC$ [2]
- d the measure of arc AC [2]
- e the measure of $\angle ABF$ [2]
- 40 The table below gives the distribution of test scores for a class of 20 students.

Test Score	Number of Students		
Interval	(frequency)		
91-100	1		
81-90	3		
71-80	3		
61-70	7		
51-60	6		

HIGH SCHOOL MATHEMATICS: COURSE I—JANUARY 1984 (7)

- a Draw a frequency histogram for the given data. [4]
- b Which interval contains the median? [2]
- c Which interval contains the lower quartile? [2]
- d What is the probability that a student selected at random scored above 90? [2]
- 41 The diagram below represents an arrow attached to a cardboard disc. The arrow is free to spin, but cannot land on a line. The disc is divided into three regions of equal area, one of which is red and the other two blue.

- a For any one spin, what is the probability of the arrow:
 - (1) landing on red [1]
 - (2) landing on blue [1]
- b The arrow is spun twice and each outcome is recorded. What is the probability of the arrow:
 - (1) landing on red on the first spin and blue on the second spin [2]
 - (2) landing on blue on both spins [2]
 - (3) not landing on blue on either spin [2]
 - (4) landing on the same color on both spins

HIGH SCHOOL MATHEMATICS: COURSE I—JANUARY 1984 (8)

42 a On your answer paper, copy and complete the truth table for the statement $[p \lor (p \land q)] \rightarrow \sim q$. [8]

p	q	$p \wedge q$	$[p \lor (p \land q)]$	~q	$[p \lor (p \land q)] \rightarrow \neg q$
T	T				
T	F				
F	Т				
F	F				

b Is
$$[p \lor (p \land q)] \rightarrow \sim q$$
 a tautology? [1]

c Justify the answer you gave in part b. [1]