EXAMINATION FOR QUALIFYING CERTIFICATES

PLANE TRIGONOMETRY

Wednesday, September 14, 1927-9.15 a. m. to 12.15 p. m., only

Answer seven questions, including three from group I and four from group II. Papers entitled to less than 75 credits will not be accepted.

A, B and C represent the angles of a triangle ABC; a, b and c represent the respective opposite sides. In a right triangle, C represents the right molt.

Give special attention to neatness and arrangement of work.

Group I

Answer three questions from this group.

1 Solve the right triangle in which c = 1843.7 and b = 618.42.

2 Given a = 77.8, b = 114.3, c = 182.2; find C. [16]

3 To find the distance from a point A to another point B, the latter being inaccessible and invisible from A, two points C and D are selected so that C, A and D are in one straight line and so that A and B are visible both from C and from D. By measurement it is found that CA = 456.7 feet, AD = 490.7 feet, angle $C = 71^{\circ}$ 23', angle $D = 36^{\circ}$ 19'; find the distance AB. [16]

4 At a point A the angle of elevation DAB to the top of a vertical wall is m° and the angle of depression CAD to its base is m° . If the horizontal distance AD is equal to a feet, prove that CB, the height of the wall, may be expressed in each of the following forms:

$$a (\tan m^{\circ} + \tan n^{\circ}); \frac{a \sin(m^{\circ} + n^{\circ})}{\cos m^{\circ} \cos n^{\circ}}$$
 [12, 4]

Group II

Answer four questions from this group.

5 a Starting with the formula for $\cos 2x$, derive the formula

$$\tan x = \frac{\sin 2x}{1 + \cos 2x} \qquad [10]$$

b Express sin x in terms of tan x. [3]

6 Prove the following identity:

$$\sin(45^{\circ} - \frac{1}{2}x) + \cos(45^{\circ} - \frac{1}{2}x) = \frac{\sin x}{\sqrt{1 - \cos x}} [13]$$

7 The angle of elevation of a tower QP (Q being the base) from a point A due south is r° and from a point B due west of the first station is s° . If the distance AB between the two stations is b, show that the height of the tower is

$$\frac{b \sin r^{\circ} \sin s^{\circ}}{\sqrt{\sin (r^{\circ} + s^{\circ}) \sin (r^{\circ} - s^{\circ})}}$$

[Note: Angles PQA, PQB, PAB and QAB are right angles.] [13]

8 a Prove without the use of tables

$$\sec 105^{\circ} = -\sqrt{2}(\sqrt{3} + 1)$$
 [8]

b If $x = \sin^{-1}(-\frac{12}{18})$ and is an angle in the third quadrant, find tan x. [5]

9 Solve the following equation for all positive values of x between 0° and 360°: $2 \sin^2 x + \sin^2 2x = 2$ [13]

10 a Show by a drawing that $\sin (90^{\circ} + x) = \cos x$, when x is an angle less than 90° . [4]

b In a circle whose radius is unity, show how to represent as a line each of the following functions of x when x is an angle less than 90°: sin x, cos x, tan x. [9]

11 State whether each of the following statements is true or false: [Label each answer with the corresponding letter.]

a $\cos (90^{\circ} + x)$ is equal to the negative of the cosine of the supplementary angle. [3]

b Tan A can never equal — $\cot A$. [2]

c The logarithm of the tangent of an angle increased by the logarithm of the tangent of the complement of the same angle always equals zero. [3]

d The equation $\sin 2A = 2 \sin A$ is true for all values of A. [2]

$$c \sin (x-y) = -\sin (x+y)$$
 [3]