PLANE GEOMETRY

Thursday, January 22, 1920-1.15 to 4.15 p. m., only

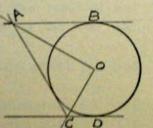
write at top of first page of answer paper (a) name of school where you have studied, (b) number of weeks and recitations a week in plane geometry. The minimum time requirement is five recitations a week for a school year.

Name the author of the textbook you have used in plane geometry.

Answer eight questions, including four from group I and four from group II.

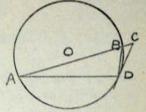
Group I

Answer four questions from this group.


- 1 Prove that if in a circle two chords are equally distant from the center, they are equal. [12]
- 2 State three theorems concerning the similarity of triangles. Prove one of these theorems. [121]
- 3 The sum of the interior angles of a polygon of n sides is . . . Complete and prove. [121]
- 4 The area of a regular polygon is equal to . . . Complete and prove. [121]
- 5 Prove that two triangles are equal (congruent) if the three sides of the one are equal respectively to the three sides of the other. [12]]

Group II

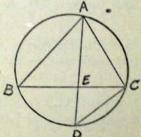
Answer four questions from this group.


6 Find the number of square inches of tin that would be wasted in cutting the largest possible circular disc of tin from a piece in the form of an equilateral triangle 12 inches on a side. [12]

7 In the figure, AB and CD are parallel tangents meeting a third tangent at A and C. O is the center of the circle. Prove that AOC is a right angle. [124]

PLANE GEOMETRY - concluded

8 In the figure, CD is tangent to the circle, angle C=42°, arc BD=32°. Find in degrees the value of each of the angles of the triangle ABD. [121]


9 The diagonals of an equilateral parallelogram (rhombus) are 24 inches and 70 inches. Find (a) the area, (b) the perimeter, (c) the altitude. [121]

10 Given a, b and c, lines of unequal length. Construct a fourth line x such that $x = \frac{ac}{b}$. Give proof. [12]

- 11 a Construct a quadrilateral three of whose angles are 150°, 90° and 60°. [101]
 - b How many degrees are there in the remaining angle? Why? [2]

12 Given a circle circumscribed about triangle ABC. D is the mid point of arc BC. AD and DC are drawn.

To prove $AB \times AC = \overline{AE}^2 + BE \times EC$

Assign a reason for each of the following statements:

	di di lougon foi cuen of the following state	ments.
1	∠BAD is measured by ½ arc BD	
	∠CAD is measured by ½ arc CD	[1]
2	∠BAD=∠CAD	[4]
3	$\angle B = \angle D$	[2]
4	△ BAE is similar to △ DAC	[2]
5	$\frac{AB}{AE + ED} = \frac{AE}{AC}$	[2]
100		

$$6 AB \times AC = AE^{2} + AE \times ED$$

$$7 AE \times ED = BE \times EC$$
[1]

$$\begin{array}{ll}
7 & \text{AE} \times \text{ED} = \text{BE} \times \text{EC} \\
8 & \text{AB} \times \text{AC} = \overline{\text{AE}}^2 + \text{BE} \times \text{EC}
\end{array} \tag{2}$$