Part I

Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. For each question, write on the separate answer sheet the letter preceding the word or expression that best completes the statement or answers the question. [40]

1. Evaluate. i^{77} [A] i [B] -1 [C] -i [D] 1

2. Which of the following transformations represents an isometry?

3. Find the fourth term in the expansion of $(y+2z)^7$.

[A] $700y^2z^5$ [B] $280y^2z^5$ [C] $280y^4z^3$ [D] $700y^4z^3$

4. Given $\log_{10} 7 = G$ and $\log_{10} 11 = H$, find $\log_{10} 77$.

[A] 10^{GH} [B] 10^{G+H} [C] GH [D] G+H

Math. B - JMAP Practice Exam

5. Given $\sin \theta = \frac{4}{9}$ and $\sec \theta < 0$, find $\cos \theta$ and $\tan \theta$.

[A]
$$\cos\theta = -\frac{\sqrt{65}}{9}$$
, $\tan\theta = \frac{4}{\sqrt{65}}$ [B] $\cos\theta = -\frac{\sqrt{65}}{9}$, $\tan\theta = -\frac{4}{\sqrt{65}}$
[C] $\cos\theta = -\sqrt{65}$, $\tan\theta = -\frac{9}{\sqrt{65}}$ [D] $\cos\theta = \frac{\sqrt{65}}{9}$, $\tan\theta = \frac{4}{\sqrt{65}}$

6. A fair coin is tossed 16 times. What is the probability of obtaining exactly 1 head?

[A] 0.0000	[B] 0.0018	[C] 0.0085	[D] 0.0002
------------	------------	------------	------------

7. Find the measure of each variable if $m \angle A = 28$ and m $\widehat{BC} = 91$. (not drawn to scale)

[A] 63; 117 [B] 35; 117 [C] 35; 234 [D] 63; 234

8. Simplify.
$$\frac{2}{9 - \sqrt{6}}$$

[A] $\frac{18 + \sqrt{6}}{75}$ [B] $\frac{4}{87}$ [C] $\frac{2\sqrt{6}}{9\sqrt{6} - 6}$ [D] $\frac{18 + 2\sqrt{6}}{75}$

9. Use special right triangles to find the coordinates of the point of intersection of the angle 150° and the unit circle. Express your answer in fractions and radicals when necessary.

$$[A] \left(\frac{2\sqrt{3}}{3}, -2\right) \qquad [B] \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$
$$[C] \left(-\frac{2\sqrt{3}}{3}, 2\right) \qquad [D] \left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$$

10. Solve the system of equations.

$$y = |x| - 6$$

$$y = -x^{2} - 4$$

[A] (-3, -4), (-1, -5)
[C] (-3, -4), (0, -7)
[D] (1, -5), (0, -7)

11. A certain gas will escape from a storage tank according to the formula $e = 140\sqrt{p}$, where *e* represents the amount escaping per minute in gallons, and *p* represents the pressure in pounds per square inch. What is the pressure on the gas when about 225 gallons per minute are escaping? Round your answer to the nearest tenth.

[A] 1.6 lb/in.² [B] 2.6 lb/in.² [C] 19.1 lb/in.² [D] 0.6 lb/in.²

12. Divide:
$$\frac{x+5}{x-5} \div \frac{x^2-25}{5-x}$$

[A] $\frac{1}{3-x}$ [B] $\frac{1}{5-x}$ [C] $\frac{x+5}{x-5}$ [D] $\frac{1}{x-5}$

~

13. Solve: $\log_8 (x-3) = -2$

[A]
$$-\frac{191}{64}$$
 [B] 8 [C] $\frac{193}{64}$ [D] 259

14. When Spheres-R-Us ships bags of golf balls, each bag must be within 5 balls of 410. Which equation is an absolute value equation representing the high and low values, and what are those values?

[A] 410-m = 5; 5, 10	[B] $ m-5 = 410; 405, 415$
[C] $ m-410 = 5; 405, 415$	[D] $ 410-5 = m; 5, 10$

15. Refer to the figure shown. Which of the following statements is true?

16. Sean and Jackie made a shady area by stretching a bedspread over a clothesline. The bedspread was 3.9 m long and made an angle of 43° with the ground where it was anchored at each side. How wide was the shady area?

[A] 1.2 m	[B] 0.2 m	[C] 3.9 m	[D] 2.9 m
	1 - 1		

- 17. Solve. Find all solutions from 0 to 2π . $\tan^2 \theta = -\frac{\sqrt{3}}{6} \sec \theta$
 - [A] $\frac{\pi}{3}, \frac{5\pi}{3}$ [B] $\frac{5\pi}{6}, \frac{7\pi}{6}$ [C] $\frac{3\pi}{4}, \frac{5\pi}{4}$ [D] none of these

- 18. Solve the inequality and give the solution in set builder notation. $x^2 + x - 56 > 0$
 - [A] $\{x \mid x < -7 \text{ or } x > 8\}$ [B] $\{x \mid x < -8 \text{ or } x > 7\}$ [C] $\{x \mid -7 < x < 8\}$ [D] $\{x \mid -8 < x < 7\}$

19. Which graph represents a function?

Part II

Answer all questions in this part. Each correct answer will receive 2 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [12]

21. The time *t* required to drive a certain distance varies inversely as the speed *r*. If it takes 4 hours to drive the distance at 45 miles per hour, how long will it take to drive the same distance at 30 miles per hour?

22. Find the value of x if AB = 24, BC = 13, and CD = 14. (not drawn to scale)

23. Simplify: $3i^6 + 2i^4 + 3i^7 - 5$

24. Solve: $8^{4x+2} = 4$

25. Last year, the personal best high jumps of track athletes in a nearby state were normally distributed with a mean of 226 cm and a standard deviation of 11 cm. What is the probability that a randomly selected high jumper has a personal best between 215 and 226 cm?

26. If f(x) = 2x - 1 and g(x) = x + 3, find g(f(2)).

Part III

Answer all questions in this part. Each correct answer will receive 4 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [24]

27. Find the area of the shaded segment. Round your answer to the nearest hundredth.

28. Solve:
$$-13x + 9 + 7x^2 = 0$$

29. Write an exponential function to model the situation. Then predict the value of the function after 5 years (to the nearest whole number).A population of 310 animals that increases at an annual rate of 16%.

30. Change the equation to standard form and name the figure. $3x^2 - 2y^2 - 6x - 8y - 11 = 0$

31. \overline{AB} is tangent to $\bigcirc O$ at *A* (not drawn to scale). Find the length of the radius *r*, to the nearest tenth.

32. The table shows the number of llamas born on llama ranches worldwide since 1988. Find a cubic function to model the data and use it to estimate the number of births in 1999.

Years since 1988	1	3	5	7	9
Llamas born (in thousands)	1.3	15.9	58.5	143.5	285.3

Part IV

Answer all questions in this part. Each correct answer will receive 6 credits. Clearly indicate the necessary steps, including appropriate formula substitutions, diagrams, graphs, charts, etc. For all questions in this part, a correct numerical answer with no work shown will receive only 1 credit. [12]

33. Solve triangle *ABC* given that a = 13, b = 17, and c = 15.

34. Draw a figure in the coordinate plane and write a two-column coordinate proof.
Given: Quadrilateral *ABCD* with *A*(-5, 0), *B*(1, -4), *C*(5, 2), *D*(-1, 6).
Prove: *ABCD* is a rectangle.

ANSWER KEY

- [1] <u>A</u>
- [2] C
- [3] C
- [4] D
- [5] B
- [6] D
- [7] B
- [8] D
- [9] D
- [10] B
- [11] B
- [12] B
- [13] C
- [14] C
- [15] B
- [16] D
- [17] <u>B</u>
- [18] B
- [19] <u>A</u>
- [20] <u>C</u>
- [21] <u>6 hr</u>
- [22] 20.4
- [23] -6-3i
- [24] $-\frac{1}{3}$
- [25] 0.34
- $[26] \quad g(f(2)) = 6$
- [27] 30.1 m²

ANSWER KEY

_

	$\frac{13 \pm i\sqrt{83}}{}$	
[28]	14	
[29]	$f(x) = 310(1.16)^x; \ 651$	
[30]	$\frac{(x-1)^2}{2} - \frac{(y+2)^2}{3} = 1$; The figure is	a hyperbola.
[31]	4.5	
[32]	$0.3x^3 + 0.8x^2 + 0.2x$; 498.3 thousand	
[33]	$A = 47.4^{\circ}, B = 74.4^{\circ}, C = 58.2^{\circ}$	
[00]		
	-10 A	
	1. Quadrilateral <i>ABCD</i> with $A(-5, 0)$,	1. Given
	B(1, -4), C(5, 2), D(-1, 6) 2. slope of $\overline{AB} = \frac{-4 - 0}{1 - (-5)} = -\frac{2}{3}$	2. Definition of slope
	slope of $\overline{BC} = \frac{2 - (-4)}{5 - 1} = \frac{3}{2}$	
	slope of $\overline{CD} = \frac{6-2}{-1-5} = -\frac{2}{3}$	
	slope of $\overline{AD} = \frac{0-6}{-5-(-1)} = \frac{3}{2}$	
	3. $AB \perp BC, BC \perp CD,$	3. Any two lines whose slopes
	$CD \perp AD, AD \perp AB$ 4. $\angle ABC, \angle BCD, \angle CDA$, and	are negative reciprocals are \perp . 4. Definition of \perp
[34]	$\angle DAC$ are right angles. 5. <i>ABCD</i> is a rectangle	5. Definition of a rectangle