0110b

- 1 If $\sqrt{x-4} = 7$, what is the value of x?
 - 1) 11
 - 2) 18
 - 3) 45
 - 4) 53
- 2 The coordinates of $\triangle ABC$ are A(1, 1), B(2, 3), and C(3, 1). If $\triangle A'B'C'$ is the result of the transformation $D_2 \circ r_{\nu-axis}$, then $\triangle A'B'C'$ is
 - 1) similar to $\triangle ABC$
 - 2) congruent to $\triangle ABC$
 - 3) a right triangle
 - 4) an equilateral triangle
- 3 What is the value of $3\sum_{n=2}^{6} \frac{n}{2}$?
 - 1) 10
 - 2) 13
 - 3) 30
 - 4) 60
- 4 An equation of a parabola that has x = 2 as its axis of symmetry is
 - $1) \quad y = x^2 4x + 1$
 - 2) $y = x^2 2x + 3$
 - 3) $y = 2x^2 + 8x 3$
 - 4) $y = 2x^2 + 4x 7$

- 5 What is the solution set for the equation $\frac{12}{2}$
 - |3-2x| = 5?
 - 1) $\{-1,4\}$
 - 2) $\{1,-4\}$ 3) $\{-1\}$
 - 4) {4}
- 6 A central angle of $\frac{4\pi}{15}$ radians intercepts an arc whose degree measure is
 - 1) 48
 - 2) 72
 - 3) 96
 - 4) $\frac{4\pi}{15}$
- 7 If $\cos 2\theta = 1$, a value of θ is
 - 1) 45°
 - 2) 90°
 - 3) 180°
 - 4) 270°
- 8 If $\cos x = -0.7$ and $\csc x > 0$, the terminal side of angle *x* is located in Quadrant
 - 1) I
 - 2) II
 - 3) III
 - 4) IV
- 9 The graph of the equation xy = 12 is best described as
 - 1) a circle
 - 2) two lines
 - 3) an ellipse
 - 4) a hyperbola

Math B Regents Exam 0110 www.jmap.org

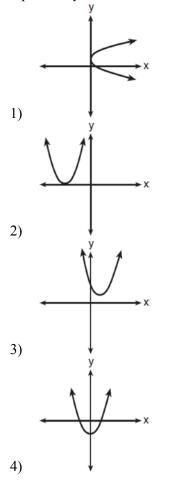
- 10 The image of function f(x) is found by mapping each point on the function (x, y) to the point (y, x). This image is a reflection of f(x) in
 - 1) the *x*-axis
 - 2) the *y*-axis
 - 3) the line whose equation is y = x
 - 4) the line whose equation is y = -x
- 11 What is the inverse of the function y = 3x 2? 1) y = -3x + 2
 - 2) $y = \frac{x+2}{3}$ 3) $y = \frac{x-2}{3}$
 - 4) 3y = 2x
- 12 Which equation represents the circle whose center is (3,-1) and whose radius is $\sqrt{6}$?
 - 1) $(x+3)^2 + (y-1)^2 = 36$
 - 2) $(x-3)^2 + (y+1)^2 = 36$
 - 3) $(x+3)^2 + (y-1)^2 = 6$
 - 4) $(x-3)^2 + (y+1)^2 = 6$
- 13 Which expression is equivalent to $\frac{y-x}{x^2-y^2}$?
 - 1) $\frac{1}{x-y}$
 - $2) \quad \frac{-1}{x-y}$
 - 3) $\frac{1}{x+y}$
 - $4) \quad \frac{-1}{x+y}$

14 If $\log x = 3 \log a - \log b$, then x is equal to

1)
$$\frac{3a}{b}$$

2) $\frac{a^3}{b}$
3) $3a-b$
4) a^3-b

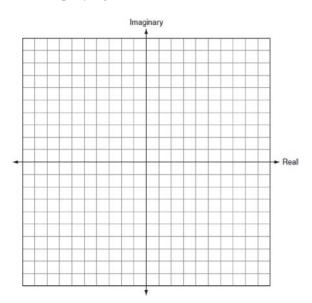
15 Which expression is equivalent to *b* in the equation $V = \sqrt{a^4 b^{\frac{1}{3}}}?$ 1) $\frac{V^6}{a^6}$


1)
$$\frac{V}{a^{12}}$$

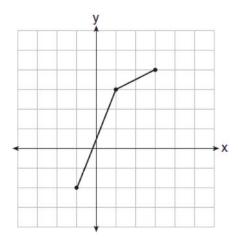
2) $\frac{V^5}{a^7}$
3) $\frac{V^2}{a^4}$
4) $\frac{V}{a^2}$

- 16 In the binomial expansion of $(x+y)^8$, what is the coefficient of the term containing x^3y^5 ?
 - 1) 15
 - 2) 28
 - 3) 56
 - 4) 70
- 17 If *R* is inversely proportional to *A*, and R = 4 when A = 100, what is the value of *R* when A = 250?
 - 1) 0.625
 - 2) 1.6
 - 3) 10
 - 4) 6,250

Math B Regents Exam 0110 www.jmap.org

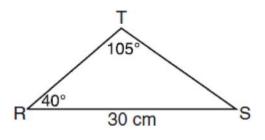

- 18 If $m \angle A = 35$, b = 3, and a = 4, how many different triangles can be constructed?
 - 1) No triangles can be constructed.
 - 2) two triangles
 - 3) one right triangle, only
 - 4) one obtuse triangle, only
- 19 In a right triangle where one of the angles measures 30°, what is the ratio of the length of the side opposite the 30° angle to the length of the side opposite the 90° angle?
 - 1) $1:\sqrt{2}$
 - 2) 1:2
 - 3) 1:3
 - 4) 1: $\sqrt{3}$

20 If zero is the value of the discriminant of the equation $ax^2 + bx + c = 0$, which graph best represents $y = ax^2 + bx + c$?



- 21 If f(x) = 3x + 1 and $g(x) = x^2 1$, find $(f \circ g)(2)$.
- 22 In $\triangle BAT$ and $\triangle CRE$, $\angle A \cong \angle R$ and $\overline{BA} \cong \overline{CR}$. Write *one* additional statement that could be used to prove that the two triangles are congruent. State the method that would be used to prove that the triangles are congruent.

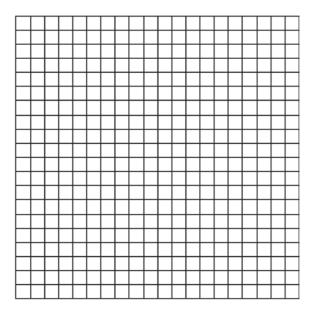
23 Given the complex numbers $z_1 = 3 + 2i$ and $z_2 = -5 + 5i$. Find $z_1 - z_2$ and graph the result on the accompanying set of axes.



24 The function, f, is drawn on the accompanying set of axes. On the same set of axes, sketch the graph of f^{-1} , the inverse of f.

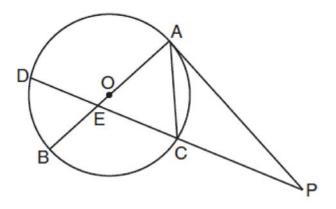
25 Express the sum of $4\sqrt{-12}$ and $3\sqrt{-27}$ in simplest radical form, in terms of *i*.

- 26 Express the reciprocal of $3 \sqrt{7}$ in simplest radical form with a rational denominator.
- 27 In the accompanying diagram of $\triangle RST$, RS = 30 centimeters, $m \angle T = 105$, and $m \angle R = 40$. Find the area of $\triangle RST$, to the *nearest square centimeter*.



28 The mid-September statewide average gas prices, in dollars per gallon, (y), for the years since 2000, (x), are given in the table below.

Year Since 2000 (<i>x</i>)	Price Per Gallon (y)
1	1.345
2	1.408
3	1.537
4	1.58


Write a linear regression equation for this set of data. Using this equation, determine how much *more* the actual 2005 gas price was than the predicted gas price if the actual mid-September gas price for the year 2005 was \$2.956.

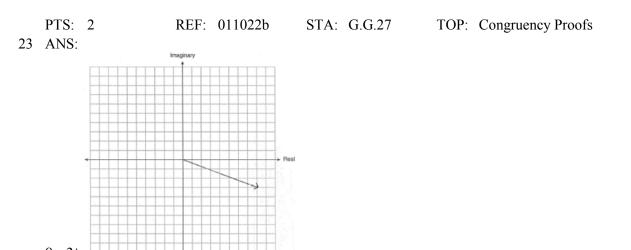
29 Given: J(-4, 1), E(-2, -3), N(2, -1)Prove: $\triangle JEN$ is an isosceles right triangle. [The use of the grid is optional.]

- 30 According to a federal agency, when a lie detector test is given to a truthful person, the probability that the test will show that the person is not telling the truth is 20%. If a company interviews five truthful candidates for a job and asks about thefts from prior employers, what is the probability a lie detector test will show that *at most* one candidate is *not* telling the truth?
- 31 Currently, the population of the metropolitan Waterville area is 62,700 and is increasing at an annual rate of 3.25%. This situation can be modeled by the equation $P(t) = 62,700(1.0325)^t$, where P(t) represents the total population and trepresents the number of years from now. Find the population of the Waterville area, to the *nearest hundred*, seven years from now. Determine how many years, to the *nearest tenth*, it will take for the original population to reach 100,000. [Only an algebraic solution can receive full credit.]

- 32 A tractor stuck in the mud is being pulled out by two trucks. One truck applies a force of 1,200 pounds, and the other truck applies a force of 1,700 pounds. The angle between the forces applied by the two trucks is 72. Find the magnitude of the resultant force, to the *nearest pound*.
- 33 In the accompanying diagram, \overline{PA} is tangent to circle *O* at *A*, chord \overline{AC} and secant \overline{PCED} are drawn, and chords \overline{AOB} and \overline{CD} intersect at *E*. If $\widehat{mAD} = 130$ and $\underline{m\angle BAC} = 50$, find $\underline{m\angle P}$, $\underline{m\angle BEC}$, and $\underline{m\angle PCA}$.

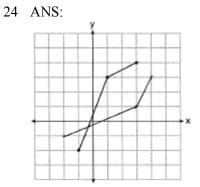
34 Solve for all values of x, to the *nearest tenth*: $\frac{1}{x} + \frac{1}{x+3} = 3$

0110b


Answer Section

1	ANS:		2	REF:	011001b	STA:	A2.A.22					
		Solving Radicals										
2		1 PTS:		REF:	011002b	STA:	G.G.59					
		Compositions of Transformations										
3	ANS:		2	REF:	011003b	STA:	A2.A.35					
	TOP:	Summations										
4	ANS:	3 PTS:	2	REF:	011004b	STA:	A.A.41					
	TOP:	Identifying the Vertex of a Quadratic Given Equation										
5	ANS:	1 PTS:	2	REF:	011005b	STA:	A2.A.1					
	TOP:	Absolute Value Equa	tions									
6	ANS:	1 PTS:	2	REF:	011006b	STA:	A2.M.2					
	TOP:	Radian Measure										
7	ANS:	3 PTS:	2	REF:	011007b	STA:	A2.A.68					
	TOP:	Trigonometric Equat	ions									
8	ANS:	2 PTS:	2	REF:	011008b	STA:	A2.A.60					
	TOP:	Finding the Terminal	Side of an Ang	gle								
9	ANS:	4 PTS:	2	REF:	011009b	STA:	A2.A.52					
	TOP:	Properties of Graphs	of Functions an	nd Rela	tions							
10	ANS:	3 PTS:	2	REF:	011010b	STA:	A2.A.44					
	TOP:	Inverse of Functions										
11	ANS:	2 PTS:	2	REF:	011011b	STA:	A2.A.44					
	TOP:	Inverse of Functions										
12	ANS:	4 PTS:	2	REF:	011012b	STA:	G.G.71					
	TOP:	Writing Equations of	Circles									
13	ANS:			REF:	011013b	STA:	A.A.16					
	TOP:	Rational Expressions	ł									
14	ANS:	—		REF:	011014b	STA:	A2.A.19					
	TOP:	Properties of Logarit	hms									
15	ANS:	1 PTS:	2	REF:	011015b	TOP:	Transforming Formulas					
16	ANS:	3 PTS:	2	REF:	011016b		A2.A.36					
	TOP:	Binomial Expansions										
17	ANS:	•		REF:	011017b	STA:	A2.A.5					
	TOP:	Inverse Variation										
18	ANS:	4 PTS:	2	REF:	011018b	STA:	A2.A.75					
	TOP:	Law of Sines - The Ambiguous Case										
19	ANS:		-		011019b	TOP:	30-60-90 Triangles					
	ANS:		2		011020b		A2.A.2					
		Using the Discriminant										
21	ANS:	c c										
	10											
	PTS:	2 REF:	011021b	STA:	A2.A.42	TOP:	Compositions of Functions					
							*					

22 ANS:


 $\angle B \cong \angle C$ and ASA, or $\angle T \cong \angle E$ and AAS, or $\overline{AT} \cong \overline{RE}$ and SAS

REF: 011023b

TOP: Graphing Complex Numbers

25	PTS: 2 ANS: $17i\sqrt{3}$	REF: 011024b	STA: A2.A.44	TOP:	Inverse of Functions
26	PTS: 2 ANS: $\frac{3+\sqrt{7}}{2}$	REF: 011025b	STA: A2.N.6	TOP:	Square Roots of Negative Numbers
27	PTS: 2 ANS: 172	REF: 011026b	STA: A2.N.5	TOP:	Rationalizing Denominators
	PTS: 4	REF: 011027b	STA: A2.A.74	TOP:	Using Trigonometry to Find Area

28 ANS: y = 0.0834x + 1.259, 1.28

REF: 011028b

PTS: 4

29 ANS:

<i></i>)	AND.						
	slopes are opposite re					e that it	s legs are perpendicular by showing their
			$m_{\overline{EN}} = \frac{-3}{-2}$	$\frac{1}{-2} = \frac{-1}{-2}$	$\frac{-2}{-4} = \frac{1}{2}$		
	To prove that $\triangle JEN$	' is an is	sosceles triangle	e, prove	e that it legs are	e congru	uent by using the distance formula:
	$d_{JE} = \sqrt{(-4 - (-2))^2}$	+(1-(-	$(-3))^2 = \sqrt{20}$	-	-	-	
	$\mathbf{d}_{\overline{EN}} = \sqrt{\left(-2 - 2\right)^2 + \left(-2 - 2\right)^2} + \left(-2 - 2\right)^2 + \left$	(-3]	$\overline{\left(1\right)^2} = \sqrt{20}$				
30	PTS: 4 ANS: <u>2304</u> <u>3125</u>	REF:	011029b	STA:	G.G.69	TOP:	Coordinate Proofs
31	PTS: 4 KEY: at least or at n ANS: 78,400, 14.6	REF: nost	011030b	STA:	A2.S.15	TOP:	Binomial Probability
32	PTS: 4 ANS: $\frac{1200}{22-100}$	7	011031b 4	STA:	A2.A.6	TOP:	Exponential Growth
33	PTS: 4 ANS: 25, 115, 115		011032b	STA:	A2.A.73	TOP:	Law of Cosines
	PTS: 6	REF:	011033b	STA:	G.G.51	TOP:	Chords, Secants and Tangents

STA: A2.S.7

TOP: Linear Regression

34 ANS: 0.4 and -2.7

PTS:	6	REF:	011034b	STA:	A2.A.23	TOP:	Solving Rationals
KEY:	irrational and	comple	x solutions				