August 19, 1959

Part I

Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed.

- 1. Express as a single term the sum of 5i and $-2\sqrt{-1}$.
- 2. Write an equation of the line whose y-intercept is 9 and whose slope is the same as that of the line whose equation is y = 3x 4.
- 3. If y varies directly as x and if $y = \frac{1}{2}$ when x = 6, find the value of x when y = 3.
 - 4. Simplify completely: $\frac{\frac{y}{x} \frac{x}{y}}{\frac{1}{x} + \frac{1}{y}}$

5. Write an equation which expresses the relationship between x and y shown in the following table:

5_____

6. Factor $3x^2 + 2x - 8$.

7. Solve the formula $S = \pi K(R + r)$ for R.

8. Write the first two terms in the expansion of $(x + 3y)^5$. 9. Solve the following set of equations for x:

3x - y = -9

10. ____

10. Solve the equation: $2 + \sqrt{4x + 7} = 5$

11. A tower stands on level ground. At a point on the ground 30 feet from the base of the tower, the angle of elevation of the top of the tower is 74°. Find, to the nearest foot, the height of the tower.

11____

12. Find the logarithm of 0.6504.

12_____

13. Find n if $\log n = 0.4950$.

13...

14. The first term of an arithmetic progression is 6 and the twenty-fifth term is 22. Find the common difference.

14_____

15. Find a geometric mean between 6 and 7.

15_____

- 16. Find the sum of the roots of the equation $9x^2 5x + 2 = 0$. 16.
- 17. Given: $y = -x^2 + 10x 16$. The maximum value of y occurs when x = m. Find the value of m.

18. Point P is the intersection of the graph of $4x^2 + 9y^2 = 36$ and the positive portion of the y-axis. Write the coordinates of P.

Directions (19-25): Indicate the correct completion for each of the following by writing on the line at the right the letter a, b, c or d.

19.
$$\frac{1}{2-\sqrt{11}}$$
 is equivalent to (a) $\frac{2+\sqrt{11}}{9}$ (b) $\frac{2+\sqrt{11}}{7}$

(c)
$$-\frac{2+\sqrt{11}}{7}$$
 (d) $-\frac{2+\sqrt{11}}{9}$

20. The value of
$$3x^0 + (3x)^{-\frac{1}{2}}$$
 when $x = 3$ is (b) $3\frac{1}{3}$ (c) 6 (d) 4

(a) 1½ 20

21. The roots of the equation $2x^2 - 8x + 7 = 0$ are (a) rational and unequal (b) irrational and equal (c) irrational and unequal (d) imaginary

22. If
$$z = \frac{x^3}{y^2}$$
, then $\log z$ is equal to (a) $\frac{3 \log x}{2 \log y}$

(a)
$$-\frac{3 \log x}{2 \log y}$$

(b)
$$\frac{3}{2} \log \frac{x}{y}$$
 (c) $\frac{3}{2} (\log x - \log y)$ (d) $3 \log x - 2 \log y$ 22

23.
$$(x^3)^{-2}$$
 is equal to (a) x (b) x^{-5} (c) x^{-6} (d) x^{-9} 23_____

24. The number 0.000036 may be written as (a) 3.6
$$\times$$
 10⁻⁶ (b) 3.6 \times 10⁻⁴ (c) 3.6 \times 10⁴ (d) 3.6 \times 10⁵

25. The graph of the equation
$$3x^2 + 3y^2 = 25$$
 is a (a) circle (b) pair of straight lines (c) parabola (d) hyperbola 25_____

Part II

Answer three questions from this part. Show all work.

- Solve the following set of equations, group your answers and check: [7, 1, 2] $\begin{array}{ccc} x^2 + xy &= -2x \\ x &- y &= 5 \end{array}$
- 27. Find to the nearest tenth the roots of the equation $2x^2 5x = 4$.
- The base edge of a regular pentagonal prism expressed in terms of its vol $s = \sqrt{\frac{V \tan 36^{\circ}}{1.25}}.$ ume V and its altitude h is given by the formula If V = 775 and h = 11.0, using logarithms find s to the nearest tenth. [10]

- 29. a Draw the graph of $y = -x^2 + 3$ for values of x from x = -3 to x = 3, inclusive. [4]
 - b On the same set of axes used in part a, draw the graph of xy = 8. [4]
 - c From the graphs made in answer to parts a and b, estimate to tenths a common solution for the two equations. [2]

The following questions, *30 and *31, are based upon optional topics in the syllabus, and one of them may be substituted for any one question in either part II or part III. Therefore one, but not both, of these questions may be included in in the total of 5 required questions from parts II and III.

*30. Solve the following system of equations for x, y and z and check your results: [8, 2]

*31. Find the three roots of the equation $2x^3 - 9x^2 - 11x + 30 = 0$. [10]

Part III

Answer two questions from this part. Show all work unless otherwise directed. Only algebraic solutions will be accepted in 34-35.

- 32. a Express the sum of $\frac{x}{x+1}$ and $\frac{3}{1-x}$ as a single fraction. [3]
 - b Find the value of the fraction obtained in answer to a when x = -2. [2] c Find the values of x for which the fraction obtained in answer to a will

be equal to
$$\frac{9}{4}$$
. [5]

- 33. Write the equation or equations that would be used to solve the following problems. In each case state what the letter or letters represent. [Solution of the equations is not required.]
 - a How many ounces of water must be added to 24 ounces of a 10-percent solution of disinfectant to reduce it to an 8-percent solution? [5]
 - b A man buys a set of tools costing \$50. He makes a down payment of \$5 and arranges to pay the remainder of his bill by paying \$1 at the end of the first week, \$1.50 at the end of the second week and by increasing his payments by \$.50 each successive week. How many weeks will it take him to pay off the debt? [5]
- 34. The units digit of a two-digit number is three more than the tens digit. One-half of the number formed by reversing the digits is ten less than the original number. Find the original number. [5, 5]
- 35. A man drove 280 miles to a conference and arrived an hour late. Had he increased his average speed five miles an hour, he would have arrived at the time for which the conference had been scheduled. What was his average speed? [5,5]

June, 1959

1. 2. 3.

4.

5. 31. .8, 3 n

1.

2. 3. 4. 5. 6. 7. 8. 31. 0.7,

l.

2. 3. 4.

5.

31. 34. —0

1. 2. 3.

4. 5. 6.

31. 34. (c)

and 32.	7i 7. 0.06066 $5(\sqrt{3} + 1)$ 8. $y = -2x$ 9. $1\frac{1}{2}$ 10. -4 1 $\frac{1}{2}$ or -4 11. 3 1 $\frac{1}{3}$ 12. hyperbola 32 x^5 - 80 x^4 y 13. $\frac{3}{4}$ 1.5973 -2, -5; $\frac{2}{3}$, 3 275, 1-3.3, -3.4, or -3.5 (c) -6 (a) $\frac{t}{u} = \frac{3}{2}$, 10t + u + 10u + $\frac{t}{2}$ \$45 for strawberries, \$22 for per	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \frac{0}{\frac{4}{1/2}} $ 7/25 5 29. (b) 9 $ \frac{200}{r + 20} + \frac{1}{2} $	31. 5, —3,	$\frac{-1}{5}$
August, 1959					
3. 4. 5.	3i y = 3x + 9 36 y - x y = 2x - 4 (3x - 4) (x + 2) 0, -5; 1½, -3½ (a) -2.5, -3.2 (a) $\frac{x^2 - 4x - 3}{x^2 - 1}$ (b) 3, ((a) .08(24 + x) = 2.4 25 - 27 - 28 - 30 (b) 3, ((a) -2.5, -3.2) (c) -3 - 2.5, -3.2 (d) -3 - 2.5, -3.2 (e) -3 - 2.5, -3.2 (f) -3 - 2.5, -3.2 (g) -2 - 2.5, -3.2 (g) -2 - 3.2 (g) -3 - 3	7Kr 12. 13. (14. 5x ⁴ y 15. 16. 17. 18. (2. 3.1, -0.6 21/2, -3 (31/5, -3	3.126 ² / ₃ V 42 or $-\bar{V}$ 5/9 5 0, 2	23. 24. 25. 6.4 31. 1½, 5,	b c d c a a
1. 2. 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(b) $\frac{10t - t}{t + 10u + t - 3}$ 3. 6, 12, 18 4. 10 in., 20 5. 2.6 of 33%	b) 1.8 $-1\frac{1}{2}$ $-\frac{20}{10}$ $\frac{10}{x}$ $\frac{1}{x$	d