INTERMEDIATE ALGEBRA

Monday, January 17, 1921 - 9.15 a. m. to 12.15 p. m., only

Write at top of first page of answer paper (a) name of school where you have studied, (b) number of weeks and recitations a week in (1) elementary algebra, (2) intermediate algebra.

The minimum time requirement is four recitations a week for half a school

year, after the completion of elementary algebra.

Answer eight questions, including either question 4 or question 5. Credits will not be granted unless all operations (except mental ones) necessary to find results are given; simply indicating the operations is not sufficient. Each answer should be reduced to its simplest form.

1 Find the prime factors of each of the following:

$x^{2a}-12x^a+36$	[21]
$6a^2 - 17a + 12$	[21]
32-v5	[21]
$x^3 - 7x^2 + 7x + 15$	[21]
$8a^4 - 18b^4$	[21]

No partial credit allowed on any part.

2 Find to the nearest hundredth the roots of

$$x^2 - 51 = 4x$$
 [12½]

- 3 a Rationalize the denominator in $\frac{\sqrt{3}-\sqrt{6}}{\sqrt{8}}$ and simplify the result.
 - b Express each of the following as a single radical and simplify where possible:

$$\sqrt[8]{4} \times \sqrt[8]{16}$$
; $\sqrt[8]{3} \div \sqrt[8]{24}$; $\sqrt[8]{\sqrt{128}}$

- a [61]; b [2], [2], [2]. No partial credit allowed on any part in b.
- 4 A farmer is cutting grain around a field 60 rods long and 40 rods wide; how wide a strip must he cut so that 5 acres remain? [160 square rods = 1 acre] Equation [8], solution [4]
- 5 A man agrees to work for a builder on the condition that for each day he works he is to receive \$6 and for each day he is idle he is to forfeit \$2; at the end of 60 days he received \$240. How many days was he idle? Equation [9], solution [31]

6 By the use of logarithms find the value of

$$\frac{.03472 \times \sqrt[8]{47.2}}{2.08}$$
 [12½]

7 Find by the use of a formula the number of consecutive integers beginning with 10 that must be taken for the sum to equal 2035. Equation [71], solution [5]

8 Solve for x and y, correctly group your answers and check:

$$x^{2} - xy + y^{2} = 7
 x^{3} + y^{3} = 28$$

First solution [6], second solution [3], grouping [1], check [21]

9 The roots of a certain equation are 3 and -24. Form the equation by two different methods. Express the equation without fractions. Each method [5], writing equation [21]

10 a If
$$y^{\frac{1}{2}} = 4$$
 and $x = y^{-2}$, find x.

b Write the value of
$$\frac{2+2^{-1}}{5} + (-8)^0 - 4^{\frac{3}{2}}$$

a Finding
$$y$$
 [4], finding x [2]; b [6½] No partial credit allowed in a .

11 If the cost of goods is C, the cost of doing business b% of the selling price and the profit b% of the selling price, find a formula for the selling price (S). [121]

12 Using the same set of axes, plot the following equations and from the graph determine the solutions they have in common:

$$x^2 + 2y = 17$$

 $x - y + 1 = 0$

First graph [8], second graph [21], reading solutions [2]

13 Find by the binomial formula the first five terms of the expansion $\left(x-\frac{1}{x}\right)^9$ and write these terms in their simplest form. Expansion [9], simplifying [31]