August 18, 1981

Part I

Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed.

Directions (1-17): Write in the space provided on the answer sheet the numeral preceding the expression that best completes each statement or answers each question.

- 1. A value of x which satisfies the inequality x+3 < 2x+7 is (1) -5 (2) -10 (3) -3 (4) -4
- 2. If $\cos x = \frac{3}{3}$ and angle x lies in the fourth quadrant, what is the value of $\tan x$? (1) $\frac{5}{4}$ (2) $-\frac{5}{4}$ (3) $\frac{3}{4}$ (4) $-\frac{4}{3}$ 2...
 - 3. The fraction $\frac{(x+2)(x-5)}{(x-1)(x+3)}$ is undefined for which value
- of x? (1) -1 (2) -2 (3) -3 (4) 5
- 4. If $\sin A < 0$, in which quadrants may angle A lie? (1) I, II (2) II, III (3) I, IV (4) III, IV 4___
 - 5. The graph of the equation $\frac{x^2}{4} + \frac{y^2}{16} = 1$ is (1) a hyperbola
- (2) a parabola (3) a circle (4) an ellipse 5___
 - 6. The numeral value of $\sin \frac{7\pi}{6}$ is (1) $\frac{1}{2}$ (2) $-\frac{1}{2}$
- (3) $\frac{\sqrt{3}}{2}$ (4) $-\frac{\sqrt{3}}{2}$
- 7. The solution set of the equation $2x^2 + 5x 3 = 0$ is (1) $\{\frac{1}{2}, -3\}$ (2) $\{-\frac{1}{2}, 3\}$ (3) $\{3\}$ (4) $\{\frac{1}{2}\}$
- 8. If triangle ABC is a right triangle and angle C is the right angle, then which is always true? (1) $\sin A = \cos B$ (2) $\sin A \cos B = 1$ (3) $\sin A + \cos B = 1$ (4) $\sin A \cos B = 1$ 8.
- 9. Which statement about the graphs of the equations 2x + 3y = 5 and 2x + 3y = -5 is true? (1) They coincide. (2) They intersect (3) They are parallel. (4) They are perpendicular. 9____
 - 10. The fraction $\frac{\frac{1}{x} + 1}{x}$ is equivalent to (1) 1 (2) $\frac{1}{x}$

(3)
$$\frac{1}{s+1}$$
 (4) $\frac{1}{s-1}$

- 11. The equation $\sqrt{x-2} = x-4$ is satisfied when x is equal to (1) both 3 and 6 (2) 6, only (3) 3, only (4) neither 3 nor 6 11____
- 12. If $2^{x} = 7$, what is the numerical value of 2^{2x} ? (1) 49 (2) 14 (3) 5 (4) 4
 - 13. In the interval $0 < A \le \frac{\pi}{2}$, which value of A satisfies the

equation $\tan^2 A - \tan A = 0$? (1) $\frac{\pi}{6}$ (2) $\frac{\pi}{2}$ (3) $\frac{\pi}{3}$ (4) $\frac{\pi}{4}$ 13____

- 14. The range of the function $y = 2 \sin x$ is (1) $y \ge 1$ (2) $x \ge 1$ (3) $-2 \le y \le 2$ (4) $-2 \le x \le 2$
- 15. Which is the equation of the graph shown below?

- 16. Which is equivalent to $\sin x \cot x + \sec x \cos x$? (1) 1 (2) $\cos x$ (3) $\sin x + 1$ (4) $\cos x + 1$ 16.
- 17. If $m \angle B = 30$ and AB = 10, it is possible to construct two distinct triangles when AC is (1) 10 (2) 6 (3) 5 (4) 4 17____

Directions (18-30): Write your answers in the spaces provided on the answer sheet. Unless otherwise specified, answers may be left in terms of π or in radical form.

- 18. What is the solution set of the equation $50(x-\frac{1}{3})=45x$? 18._____
- 19. If $y = \operatorname{Arc\,sin}\left(\frac{\sqrt{2}}{2}\right)$, what is the value of y?
- 20. If x varies inversely as y and x = 8 when y = 3, find x when y = 6.
- 21. When the number 56,100,000 is written in the form of 5.61 \times 10°, what is the value of π ?
 - 22. Solve for x: 2x + 3y = 135x - 2y = 422.
- 23. Steve has \$1.40 in nickels and dimes. If he has twice as many nickels as dimes, how many dimes does he have?
- 24. Solve for the positive value of x: $\frac{2x}{3\sqrt{2}} = \frac{3\sqrt{2}}{x}$ 24_____
- 25. In triangle ABC, a=8, b=12, and $\sin A=\frac{1}{3}$. Find the value of $\sin B$.

- 26. If $f(x) = x^{\frac{1}{6}} 4x^0$, evaluate f(8) in simplest form. 26_____
- 27. Express $\frac{1}{3+\sqrt{2}}$ as a fraction with a rational denominator. 27
- 28. Using logarithms, find the value of ₹5 to the nearest hundredth.
- 29. In a circle, a central angle of 1 radian intercepts an arc of 2 centimeters. What is the length in centimeters of the radius of this circle?
 - 30. What is the value of tan 23° 38' to four decimal places? 30_____

Part II

Answer four questions from this part. Show all work unless otherwise directed.

- 31. a Find, to the nearest tenth, the value(s) of tan θ which satisfy the equation $\tan^2 \theta 3 \tan \theta + 1 = 0$. [8]
 - b Using the answer(s) obtained in part a, find the quadrant(s) in which angle θ may lie. [2]
- 32. A pendulum formula is given by the equation below:

$$t = 6.28 \sqrt{\frac{L}{32.2}}$$

Using logarithms, find t to the nearest tenth if L = 25.5. [10]

- 33. If the perimeter of a rectangle is 46 units and its diagonal is 17 units, find its length and width. [Only on algebraic solution will be accepted.] [5, 5]
 - 34. a On the same set of axes, sketch the graphs of $y = 2 \cos \frac{1}{2}x$ and $y = \frac{1}{2}$ for values of x in the interval $-\pi \le x \le \pi$. [Label each graph with its equation.] [6, 2]
 - b From the graphs sketched in part a, find the number of values of x in the interval $-\pi \le x \le \pi$ that satisfy 2 cos $\frac{1}{2}x = \frac{1}{2}$. [21]
 - 35. Given: obtuse angle x and sin $x = \frac{24}{25}$.

Find:

$$a \sin \frac{x}{2}$$
 [5]

 $b \sin 2x$ [5]

- 36. The sides of triangle ABC are a = 10, b = 12, and c = 18. Find, to the nearest degree, the measure of the largest angle of triangle ABC. [10]
 - 37. a On the same set of axes, graph the following system of inequalities: $y \ge x^2 2x 8$ and x y + 2 > 0 [8]
 - b Find the coordinates of a third quadrant point with integer values which satisfies the system in part a. [2]