June 21, 1982

Part I

Answer all questions in this part. Each correct answer will receive 2 credits. No partial credit will be allowed. Unless otherwise specified, answers may be left in terms of π or in radical form. Write your answers in the spaces provided on the answer sheet.

Directions (14-30): Write in the space provided on the answer sheet the numeral preceding the expression that best completes each statement or answers each question.

14. The sum of $\sqrt{-8}$ and $\sqrt{-18}$ in terms of *i* equals (1) 5*i* (2) 13*i* (3) 5*i* $\sqrt{2}$ (4) 13*i* $\sqrt{2}$ 14____

15. Given:
$$\frac{x+20}{x-10} = b$$

If b = 2, then x is equal to (1) 0 (2) 10 (3) 30 (4) 40 15____

16. Which value of x is in the solution set of the inequality

$$x > 2x - 1$$
? (1) 1 (2) -1 (3) 3 (4) $\frac{3}{2}$ 16___

17. The equation $\sqrt{x+18}+2=x$ is satisfied when x is equal to (1) both 7 and -2 (2) -2, only (3) 7, only (4) neither 7 nor -2 17......

18. The product of which of the following pairs of complex numbers may be expressed as a real number? (1) (1 + 2i)(1 - 2i) (2) (2 + 3i)(2 + 3i) (3) (2 + 5i)(5 - 2i) (4) (1 + 3i)(1 + 3i) 18.....

19. The secant of an angle can *not* be equal to (1) (2) 2 (3) 3 (4) 0 19____

21. The expression $3 \log x - \frac{1}{2} \log y$ is equivalent to

(1) $\log \frac{x^3}{\sqrt{y}}$ (2) $\log x^3 - \log \frac{y}{2}$ (3) $\log \frac{3x}{2y}$ (4) $\log \frac{\sqrt[4]{x}}{2y}$ 21____

22. The expression $\frac{\cot x}{\csc x}$ is equivalent to (1) $\cos x$ (2) $\csc x$ (3) $\sec x$ (4) $\sin x$ 22.

 $(2) \csc x \qquad (3) \sec x \qquad (4) \sin x \qquad \qquad 2$

23. Which value of
$$x$$
 satisfies the equation 6 tan $x - 2 = 4$?

(1) $\frac{\pi}{6}$ (2) $\frac{\pi}{2}$ (3) $\frac{\pi}{3}$ (4) $\frac{\pi}{4}$ 23____

24. Which equation defines a relation that is not a function?

(1)
$$y = \sin x$$
 (2) $y = x^2$ (3) $y^2 = -x^2 + 9$ (4) $y = \frac{1}{x}$ 24____

25. Which value of x satisfies the equation $\sin (2x + 30^{\circ}) = \cos (3x + 20^{\circ})$? (1) 8° (2) 2° (3) 10° (4) 28° 25____

26. An equivalent expression for $\log_b x = a$ is
(2) $a^a = b$ (3) $a^b = x$ (4) $x^a = b$ (1) $b^a = x$

27. The expression $\tan (x + 45^{\circ})$ is equivalent to (1) $\frac{\tan x - 1}{1 + \tan x}$

(2)
$$\frac{\tan x + 1}{1 - \tan x}$$
 (3) $\frac{\tan x}{1 + \tan x}$ (4) $\frac{\tan x}{1 - \tan x}$

28. If a, b, and c represent real numbers, which property describes the statement (a + b)c = c(a + b)? (1) the commutative property of addition (2) the associative property of multiplication

(3) the associative property of addition (4) the commutative property of multiplication

29. In triangle ABC, if b = 20 and $m \angle A = 30$, it is possible to construct two distinct triangles when side a is (1) 8 (3) 15

 Which is the equation of a line perpendicular to the line whose equation is 3x - 2y = 6? (1) 3x - 2y = 8 (2) 3x + 2y = 4 (3) 2x - 3y = 8 (4) 2x + 3y = 4

(4) 20

Part II

Answer four questions from this part. Show all work unless otherwise directed.

- 31. a Find, to the nearest tenth, the roots of the equation $2(x^2 + 1) = 7x$.
 - b If, in the equation given in part a, x is replaced with cos θ , determine the quadrant(s) in which angle θ may lie. [2]
- 32. a On the same set of axes, sketch and label the graphs of $y = \frac{1}{2} \cos 2x$ and $y = \tan x$ for values of x in the interval $0 \le x \le 2\pi$. [4, 4]
 - b Throughout which interval is $\tan x$ less than $\frac{1}{2} \cos 2x$?

(1)
$$0 < x < \frac{\pi}{2}$$
 (2) $0 < x < \pi$ (3) $\frac{\pi}{\hat{z}} < x < \pi$ (4) $\pi < x < 2\pi$ [2]

- 33. a Find all values of θ in the interval $0 < \theta < 360^{\circ}$ that satisfy the equation $\sin 2\theta - \sin \theta = 0$. [6]
 - b Prove that the following equality is an identity:

$$\frac{\cos x}{\tan x} = \csc x (1 - \sin^2 x)$$
 [4]

- 34. a Using logarithms, find the value of n to the nearest hundredth: $n = \sqrt[4]{0.461}$ **[4]**
 - b If $3^{n} = 8$, find the value of x to the nearest tenth.
 - c Find the coordinates of the point that the graphs of $y = \log_2$ and $y = \log_{10} x$ have in common. [2]

- 35. Write an equation or system of equations which can be used to solve each of the following problems. In each case state what the variable or variables represent. [Solution of the equations is not required.]
 - a The tens digit of a two-digit number is three times the units digit. The number obtained by reversing the digits is 18 less than the original number. Find the original number. [5]
 - b How many ounces of pure acid must be added to 30 ounces of a 20% solution of acid to make it a 50% solution? [5]
 - 36. Answer either a or b, but not both.
 - a In triangle ABC, $m \angle A = 50$, a = 48, b = 62, and angle B is obtuse. Find $m \angle C$ to the nearest degree. [10]
 - b Town A is 24 kilometers from town C. Town B is 30 kilometers from town C.
 - If $m \angle ACB = 68$, find, to the nearest kilometer, the distance between towns A and B. [10]
 - *37. Solve the system of equations and check.

$$3x + y - 4z + 2 = 0$$

$$x + y + 2z + 1 = 0$$

$$x + 2y + 6x + 2 = 0$$
 [8, 2]

* This question is based on an optional topic in the syllabus.