University of the State of New York

75TH EXAMINATION

ANALYTICAL GEOMETRY

FRIDAY, Jan. 23, 1891-9:15 A. M. to 12:15 P. M., only

40 credits,	necessary	to	pass,	30
-------------	-----------	----	-------	----

Use rectangular co-ordinates unless otherwise mentioned		1.
1. Define (a) rectangular co-ordinates; (b) equation o	1 2	a line;
(c) ellipse; (d) parabola.		4
2. Construct and discuss the equation $x^2 + y^2 = 16$.		4
2. Construct and discuss the equation a 1 5		

- 3. Prove that $\frac{x}{a} + \frac{y}{b} = 1$ is the equation of a right line, a and b being the distances from the origin at which it intersects the two axes.
- 4. Prove that the formulas for passing from a rectangular to a polar system of co-ordinates, when the polar axis is parallel to the axis of x, are $x = m + r \cos A$, and $y = n + r \sin A$.
- 5. Prove that the polar equation of the circle is $r^2 2rr' \cos(A-B) + r'^2 R^2 = 0$, in which R is the radius of the circle, and r' and B the co-ordinates of any point P.
- 6. Prove that the equation of the parabola, referred to its axis and tangent at the principal vertex, is $y^2=2px$, p representing the distance from the focus to the directrix.
- 7. Find the points of intersection of the parabola $y^2 = 8x$ and the line 3y 2x 8 = 0.
- 8. Find the equation of a tangent to the ellipse $3y^2+2x^2=35$ at the point whose abscissa is 2.
 - 9. Find the eccentricity of the ellipse $2x^2 + 3y^2 = 2$.
- 10. Find the transverse and conjugate axes of the hyperbola whose equation is $3y^2-2x^2+12=0$; find also the parameter.