June 21, 1962

Part I

Answer all questions in this part. Each correct answer will receive 21/2 credits. No partial credit will be allowed.

- 1. If f(x) is $x^{-3/2} 2x^0$, find the value of f(4).
 - 1_____
- 2. Find the radius of the circle $x^2 2x + y^2 + 8y = 4$.
- 3. The repeating decimal .7666...., in which the digit 6 repeats endlessly, is rational. Show that it is rational by writing it in the
- form $\frac{p}{q}$ where p and q are integers.

- 3_____
- 4. Find the coordinates of the point at which the graph of $y = 2^x$ intersects the y-axis.
- 5. In the equation $x^3 + px^2 qx = 0$, p and q are real numbers. If one root is 2 i, find the value of p.
- 6. Write in simplest form the tenth term *only* of the expansion of $\left\{2 \frac{1}{2}\right\}^{12}$
- 6_____
- 7. Write in the form $r(\cos\theta + i\sin\theta)$ the root of $x^3 + 8 = 0$ which, when represented graphically, lies in quadrant I.
 - 8. If $\frac{x^{13}+17}{x+1}$ is expressed in the form $Q(x)+\frac{R}{x+1}$,
- where R is a constant, find the value of R.

respect to x for the interval from x = -1 to x = 1.

- 8_____
- 9. The graph of $y = x^2 8x + k$ is tangent to the x-axis. Find the value of k.
- 9...__
- 10. Find the slope of a straight line which is tangent to the graph of y = 2x² 7x + 5 at (-1, 14).
 11. If y = 3x³ 7x, find the average rate of change of y with
 - 11
- 12. What is the nonintegral rational root of the equation $2x^3 11x^2 + 8x + 7 = 0$?
- 12_____
- 13. Between what two consecutive integers does the smaller positive irrational root of $2x^3 11x^2 + 8x + 7 = 0$ lie?
 - 13_____

14

- 14. The fourth term of an arithmetic progression is 3c and the ninth term is -5c. Find the first term.
- 15____
- 15. If each signal is to consist of five flags arranged in sequence on a pole, how many different signals may be constructed from three identical red flags and two identical blue flags?
 - wo ob-16_____
- 16. Four faces of a die are painted red and the remaining two faces are painted green. If the die is tossed once, what is the probability that it lands with a green face up?

38___

38. Solve $8^{2x} = (\frac{1}{16})^{x-1}$ for x.

39. The sum of an infinite geometric progression is $2\sqrt{2} + 2$. If the common ratio is $\frac{1}{\sqrt{2}}$, find the first term. 39 40. If the only roots of $x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... + a_n = 0$ are 3-i, 3+i and -4, find the value of a_2 41. If $x^{2.5} = 94.3$, find x to the nearest tenth. 41 42. The sum of an arithmetic progression of 8 terms is S, the first term is a and the eighth term is $\frac{a}{2}$. Express a as a function of S. 43. Ten balls numbered 1 to 10 are placed in a bag, and two of the balls are drawn at random. What is the probability that balls 43 numbered 3 and 7 are drawn? *44. Transform $2x^2 + 5y^2 = 1$ into an equation in polar coordinates. 45. Using k as the constant of variation, write an equation which represents the following relationship: x varies directly as the square of γ and inversely as z. Directions (46-48): For each of those chosen, write in the space provided the number preceding the expression that best completes the statement *46. The graph of $r = 2 \cos \theta$ is a (1) straight line parallel to the y-axis (2) circle passing through the pole (3) straight line passing through the pole (4) circle with center at the pole 47. The roots of $x^4 + 3x^2 - 28 = 0$ are (1) $\sqrt{7}$, $-\sqrt{7}$, 2, -2 (2) 7, 7, 2, 2 (3) +7i, -7i, 2, -2 (4) $+i\sqrt{7}$, $-i\sqrt{7}$, 2, -248. The equation $\sqrt{2+x}-x=0$ has (1) no root (2) 2 as its only root (3) -1 as its only root (4) the two roots 2 and -1 48.