ADVANCED ALGEBRA

Wednesday, June 23, 1948 - 9.15 a. m. to 12.15 p. m., only

Part I

Answer all questions in this part. Each correct answer will receive 24 credits. No partial credit will be allowed. Each answer must be reduced its simplest form.

its simplest form.	reduced b
1. Express $\frac{2-3i}{3-2i}$ as a fraction with a real denominator.	1
2. Write the equation of the straight line parallel to the line $2x - 3y = 4$ and passing through the origin.	2
3. Given the equation $kx^2 - 4x + k = 0$, find the positive value of k which will make the roots equal.	3
4. If $f(x) = x^2 - 3x + 2$, find $f(2a)$.	4
5. Given $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$; solve for R_2 .	5
6. Find the remainder when $x^{75} - 2$ is divided by $x + 1$.	6
7. Write the equation of lowest degree possible with real coefficients which has for two of its roots 1 and $2+5i$.	7
8. Find the sum of the roots of the equation $2x^3 - x^2 + 8 = 0$	8
9. Transform the equation $2x^3 - x^2 + 8 = 0$ into an equation whose roots are the negatives of the roots of the given equation.	9
10. The equation $2x^3 - x^2 + 8 = 0$ has one and only one negative root. [Answer true or false.]	10
11. Which of the following is a rational integral equation	
in x ? $(a)x^2 - \frac{1}{x} + 7 = 0$ $(b)x^2 - x^{-1/4} + 7 = 0$	
$(c)x^2 - \frac{1}{2}x - \sqrt{7} = 0$	11
12. Solve $3x + 4 = 9x$	12
13. Find the x-intercept of the graph of $y = \log_{10} x$	13
14. If $y = -ax^2 + bx + c$, in which a, b and c are positive integers, then there is always a value of x which will make y negative. [Answer true or false.]	14

15. Find the logarithm of (100)1.4

16. Express .23333... as a common fraction.

15.

17. Express in simplest form the third term of the expansion of $(2x^3 - \frac{5}{3})^5$

ADVANCED ALGEBRA--JUNE 23, 1948--2

18. If the probability of a man's living for at least 10 years

is .8, find the probability of his dying within these 10 years.	18
19. If ${}_{n}C_{2} = 45$, find n .	19
20. How many numbers of 3 digits each can be written with the digits 1, 5, 6, 8, 9 if repetition is allowed?	20
Part II	
Answer five questions from part II.	
21. Find to the nearest tenth the real root of the equation $x^3 + 3x - 20 = 0$ [10]	
22. Solve the equation $2x^4 + 9x^3 + 15x^2 + 14x - 12 = 0$	[10]
23. Given $V = \frac{\pi e r^3}{540}$; if $V = 146$ and $e = 173$, find r to	the nearest
Serith. [Use $\pi = 3.14$] [10]	
24. Solve graphically the following pair of equations: [Essewer to the nearest tenth.] [6, 2, 2] $y = 2x$	timate your
6x + 7y = 42	
25. a. The amount of electrical current required to melt a varies as the three-halves power of the diameter. If required to melt a wire of diameter 0.09 in. is 27 an current will melt a wire of diameter 0.04 in.? [6]	the current
b. Given $G = \frac{10}{10}$; express G in terms of M and A	if
$M = \frac{\pi P H A^2}{3} \qquad [4]$	
26. The workers in a certain trade have been receiving \$77 a see asking for the same weekly wage for 4 fewer hours per sell increase their hourly wage by 17½ cents. What is their proge? [10]	week, which
27. Prove that if —, a rational fraction in its lowest terms,	is a root of
q $+ bx + c = 0$, in which a, b and c are integers, then p is a statement that this is a special case of the more general theoretical [10]	factor of c.
 a. Express in polar form the complex number 2 - 2i. b. Express 2(cos 120° + i sin 120°) in the form a + b. c. Express in polar form one of the imaginary roots of 	ni. [3]

This question is based on one of the optional topics in the syllabus.

29. Find the equation of the tangent to the curve $y = x^3 - 2x^2 + 2x - 8$

 $x^4 - 1 = 0$ [4]

the point whose abscissa is 2. [10]