University of the State of New York

211TH HIGH SCHOOL EXAMINATION

ADVANCED ALGEBRA

Monday, June 15, 1914-9.15 a. m. to 12.15 p. m., only

Write at top of first page of answer paper (a) name of school where you have studied, (b) number of weeks and recitations a week in (1) elementary algebra, (2) intermediate algebra, (3) advanced algebra.

The minimum time requirement is five recitations a week in algebra for

two school years.

Answer eight questions. Credit will not be granted unless all operations (except mental ones) necessary to find results are given; simply indicating the operations is not sufficient. Each answer should be

- For what values of k does the equation (x+k)x-(k-3)=0have its roots equal? Give a value of k that makes both roots
 - 2 Determine k and m so that the equation $x^2 + 2kx + 3mx - k + 2m + 7 = 0$ shall have both roots equal to zero.
- 3 What is the value of $x^3 + 3x^2 7x + 10$ when x = 1 i? $[i=\sqrt{-1}]$
 - 4 In the system of equations $\begin{cases} 2x + 3y z + 3 = 0 \\ 2x 3y + 3z = 2 \\ -x + 2y + 5z = 5 \end{cases}$ find the value of z by the use of determinants.

5 a In how many ways can 7 boys stand in line, only 2 being willing to stand at the extremities of the line?

b Of 8 books of the same size, a shelf will hold 5; how many different arrangements may be made on the

6 a Prove that if all of the elements of a row of a determinant are zero, the value of the determinant is zero. $\begin{bmatrix} 4\frac{1}{2} \end{bmatrix}$

b Solve x(x+1)(x+2)(x+3) = 24

7 a What information regarding the roots of the equation $x^5-4x^4+2x+1=0$ is obtainable by the application

b From a sketch of the graph of the equation $f(x) = x^5 - 4x^4 + 2x + 1 = y$ estimate the values of the real roots of f(x) = 0

8 It is desired to double the capacity of a tank 3×4×5 feet by making equal elongations of its dimensions; find the elongation of each dimension.

o Prove that if a rational integral equation with real coefficients has the complex number c+id for a root, it must also have the number c - id for a root.

to Compute by Horner's method, to two decimal places, one root of the equation $x^4 + 2x^2 - 2x - 4 = 0$