University of the State of New York

Examinations Department

79th examination

ADVANCED ALGEBRA

Monday, Jan. 25, 1892—9:15 a. m. to 12:15 p. m., only

48 credits, necessary to pass, 36

Note.—Give each step of solution. Reduce fractions to lowest terms. Express final result in its simplest form and mark it Ans.

- I. Find the square root of $20 5\sqrt{12}$.
- 2. Discuss the roots of the equation $x^2 + ax = b$ as to their being positive or negative, real or imaginary, equal or unequal.
- 3. Derive the formula for the last term of a geometric series and that for the sum of the series. (Simply stating the formulas will not be sufficient.)
 - 4. Expand $\left(\frac{a^{\frac{1}{2}}}{2} \frac{3}{b}\right)^{-\frac{1}{5}}$ to four terms by the binomial formula. 4
- 5. Resolve $\frac{5x-11}{2x^2+x-6}$ into partial fractions by the method of undetermined coefficients.
- 6. Combine the equation x=a+b and the inequality, y>a-b, by adding, subtracting, multiplying and dividing member by member. 4
- 7. Define logarithm. Name and define the two parts of a logarithm. The logarithm of 65.68 is 1.8174; what is the logarithm of .06568? 4
- 8. Revert the series $y=x+x^2+x^3+\cdots$ to four terms and find the approximate value of x when $y=\frac{1}{10}$.
- 9. Find the equal roots of the equation $x^4-8x^3+23x^2-28x+12=0$, then depress the equation and find the remaining roots.