Regents Exam Questions G.SRT.B.5: Quadrilateral Proofs www.jmap.org

G.SRT.B.5: Quadrilateral Proofs

1 Given that $A B C D$ is a parallelogram, a student wrote the proof below to show that a pair of its opposite angles are congruent.

What is the reason justifying that $\angle B \cong \angle D$?

1) Opposite angles in a quadrilateral are congruent.
2) Parallel lines have congruent corresponding angles.
3) Corresponding parts of congruent triangles are congruent.
4) Alternate interior angles in congruent triangles are congruent.
2 Given: Parallelogram $A B C D$ with diagonal $\overline{A C}$ drawn

Prove: $\triangle A B C \cong \triangle C D A$

Name: \qquad

3 Given: Quadrilateral $A B C D$, diagonal $\overline{A F E C}$, $\overline{A E} \cong \overline{F C}, \overline{B F} \perp \overline{A C}, \overline{D E} \perp \overline{A C}, \angle 1 \cong \angle 2$ Prove: $A B C D$ is a parallelogram.

4 In the diagram below of quadrilateral $A B C D$, $\overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$. Line segments $A C, D B$, and $F G$ intersect at E. Prove:
$\triangle A E F \cong \triangle C E G$

5 Given: parallelogram $F L S H$, diagonal $\overline{F G A S}$, $\overline{L G} \perp \overline{F S}, \overline{H A} \perp \overline{F S}$

Prove: $\triangle L G S \cong \triangle H A F$

Regents Exam Questions G.SRT.B.5: Quadrilateral Proofs www.jmap.org

6 The accompanying diagram shows quadrilateral $B R O N$, with diagonals $\overline{N R}$ and $\overline{B O}$, which bisect each other at X.

Prove: $\triangle B N X \cong \triangle O R X$
7 Given: Parallelogram $A N D R$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E, respectively

Prove that $\triangle A N W \cong \triangle D R E$. Prove that quadrilateral $A W D E$ is a parallelogram.

8 Given: Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E

Prove: $\triangle A E D \cong \triangle C E B$
Describe a single rigid motion that maps $\triangle A E D$ onto $\triangle C E B$.

Name: \qquad

9 Given: Quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, diagonal $\overline{A C}$ intersects $\overline{E F}$ at G, and $\overline{D E} \cong \overline{B F}$

Prove: G is the midpoint of $\overline{E F}$
10 The diagram below shows rectangle $A B C D$ with points E and F on side $\overline{A B}$. Segments $C E$ and $D F$ intersect at G, and $\angle A D G \cong \angle B C G$. Prove:
$\overline{A E} \cong \overline{B F}$

11 The diagram below shows square $A B C D$ where E and F are points on $\overline{B C}$ such that $\overline{B E} \cong \overline{F C}$, and segments $A F$ and $D E$ are drawn. Prove that $\overline{A F} \cong \overline{D E}$.

Regents Exam Questions G.SRT.B.5: Quadrilateral Proofs www.jmap.org

12 Given: Parallelogram $D E F G, K$ and H are points on $\overrightarrow{D E}$ such that $\angle D G K \cong \angle E F H$ and $\overline{G K}$ and $\overline{F H}$ are drawn.

Prove: $\overline{D K} \cong \overline{E H}$
13 In quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, and $\overline{B F}$ and $\overline{D E}$ are perpendicular to diagonal $\overline{A C}$ at points F and E.

Prove: $\overline{A E} \cong \overline{C F}$
14 In the diagram of quadrilateral $A B C D$ with diagonal $\overline{A C}$ shown below, segments $G H$ and $E F$ are drawn, $\overline{A E} \cong \overline{C G}, \overline{B E} \cong \overline{D G}, \overline{A H} \cong \overline{C F}$, and $\overline{A D} \cong \overline{C B}$.

Prove: $\overline{E F} \cong \overline{G H}$

Name: \qquad

15 In the diagram of quadrilateral $A B C D$ below, $\overline{A B} \cong \overline{C D}$, and $\overline{A B} \| \overline{C D}$. Segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$.

Prove: $\overline{C E} \cong \overline{A F}$
16 Given: PROE is a rhombus, $\overline{S E O}, \overline{P E V}$, $\angle S P R \cong \angle V O R$

Prove: $\overline{S E} \cong \overline{E V}$
17 In quadrilateral $A B C D, E$ and F are points on $\overline{B C}$ and $\overline{A D}$, respectively, and $\overline{B G D}$ and $\overline{E G F}$ are drawn such that $\angle A B G \cong \angle C D G, \overline{A B} \cong \overline{C D}$, and $\overline{C E} \cong \overline{A F}$.

Prove: $\overline{F G} \cong \overline{E G}$

Regents Exam Questions G.SRT.B.5: Quadrilateral Proofs www.jmap.org

18 Given: Parallelogram $P Q R S, \overline{Q T} \perp \overline{P S}, \overline{S U} \perp \overline{Q R}$

Prove: $\overline{P T} \cong \overline{R U}$
19 Given: Quadrilateral $M A T H, \overline{H M} \cong \overline{A T}$, $\overline{H T} \cong \overline{A M}, \overline{H E} \perp \overline{M E A}$, and $\overline{H A} \perp \overline{A T}$

Prove: $T A \bullet H A=H E \bullet T H$
20 Given: Quadrilateral $A B C D, \overline{A C}$ and $\overline{E F}$ intersect at $H, \overline{E F}\|\overline{A D}, \overline{E F}\| \overline{B C}$, and $\overline{A D} \cong \overline{B C}$.

Prove: $(E H)(C H)=(F H)(A H)$

Name: \qquad

21 In the diagram of parallelogram $A B C D$ below, $\overline{B E} \perp \overline{C E D}, \overline{D F} \perp \overline{B F C}, \overline{C E} \cong \overline{C F}$.

Prove $A B C D$ is a rhombus.
22 Isosceles trapezoid $A B C D$ has bases $\overline{D C}$ and $\overline{A B}$ with nonparallel legs $\overline{A D}$ and $\overline{B C}$. Segments $A E$, $B E, C E$, and $D E$ are drawn in trapezoid $A B C D$ such that $\angle C D E \cong \angle D C E, \overline{A E} \perp \overline{D E}$, and $\overline{B E} \perp \overline{C E}$.

Prove $\triangle A D E \cong \triangle B C E$ and prove $\triangle A E B$ is an isosceles triangle.

23 Given: Quadrilateral $A B C D$ with $\overline{A B} \cong \overline{C D}$, $\overline{A D} \cong \overline{B C}$, and diagonal $\overline{B D}$ is drawn Prove: $\angle B D C \cong \angle A B D$

24 Prove that the diagonals of a parallelogram bisect each other.

25 A tricolored flag is made out of a rectangular piece of cloth whose corners are labeled A, B, C, and D. The colored regions are separated by two line segments, $\overline{B M}$ and $\overline{C M}$, that meet at point M, the midpoint of side $\overline{A D}$. Prove that the two line segments that separate the regions will always be equal in length, regardless of the size of the flag.

G.SRT.B.5: Quadrilateral Proofs
 Answer Section

1 ANS: 3
REF: 081208ge
2 ANS:
Parallelogram $A B C D$ with diagonal $\overline{A C}$ drawn (given). $\overline{A C} \cong \overline{A C}$ (reflexive property). $\overline{A D} \cong \overline{C B}$ and $\overline{B A} \cong \overline{D C}$ (opposite sides of a parallelogram are congruent). $\triangle A B C \cong \triangle C D A$ (SSS).

REF: 011825geo
3 ANS:

$\overline{F E} \cong \overline{F E}$ (Reflexive Property); $\overline{A E}-\overline{F E} \cong \overline{F C}-\overline{E F}$ (Line Segment Subtraction Theorem); $\overline{A F} \cong \overline{C E}$ (Substitution); $\angle B F A \cong \angle D E C$ (All right angles are congruent); $\triangle B F A \cong \triangle D E C$ (AAS); $\overline{A B} \cong \overline{C D}$ and $\overline{B F} \cong \overline{D E}(\mathrm{CPCTC}) ; \angle B F C \cong \angle D E A$ (All right angles are congruent); $\triangle B F C \cong \triangle D E A$ (SAS); $\overline{A D} \cong \overline{C B}(\mathrm{CPCTC}) ; A B C D$ is a parallelogram (opposite sides of quadrilateral $A B C D$ are congruent)

REF: 080938ge
4 ANS:
Quadrilateral $A B C D, \overline{A D} \cong \overline{B C}$ and $\angle D A E \cong \angle B C E$ are given. $\overline{A D} \| \overline{B C}$ because if two lines are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel. $A B C D$ is a parallelogram because if one pair of opposite sides of a quadrilateral are both congruent and parallel, the quadrilateral is a parallelogram. $\overline{A E} \cong \overline{C E}$ because the diagonals of a parallelogram bisect each other. $\angle F E A \cong \angle G E C$ as vertical angles. $\triangle A E F \cong \triangle C E G$ by ASA.

REF: 011238ge
5 ANS:
Because $F L S H$ is a parallelogram, $\overline{F H} \cong \overline{S L}$. Because $F L S H$ is a parallelogram, $\overline{F H} \| \overline{S L}$ and since $\overline{F G A S}$ is a transversal, $\angle A F H$ and $\angle L S G$ are alternate interior angles and congruent. Therefore $\triangle L G S \cong \triangle H A F$ by AAS.

REF: 010634b

6 ANS:
Because diagonals $\overline{N R}$ and $\overline{B O}$ bisect each other, $\overline{N X} \cong \overline{R X}$ and $\overline{B X} \cong \overline{O X} . \angle B X N$ and $\angle O X R$ are congruent
vertical angles. Therefore $\triangle B N X \cong \triangle O R X$ by SAS.

REF: 080731b
7 ANS:
Parallelogram $A N D R$ with $\overline{A W}$ and $\overline{D E}$ bisecting $\overline{N W D}$ and $\overline{R E A}$ at points W and E (Given). $\overline{A N} \cong \overline{R D}$, $\overline{A R} \cong \overline{D N}$ (Opposite sides of a parallelogram are congruent). $A E=\frac{1}{2} A R, W D=\frac{1}{2} D N$, so $\overline{A E} \cong \overline{W D}$ (Definition of bisect and division property of equality). $\overline{A R} \| \overline{D N}$ (Opposite sides of a parallelogram are parallel). $A W D E$ is a parallelogram (Definition of parallelogram). $R E=\frac{1}{2} A R, N W=\frac{1}{2} D N$, so $\overline{R E} \cong \overline{N W}$ (Definition of bisect and division property of equality). $\overline{E D} \cong \overline{A W}$ (Opposite sides of a parallelogram are congruent). $\triangle A N W \cong \triangle D R E$ (SSS).

REF: 011635geo
8 ANS:
Quadrilateral $A B C D$ is a parallelogram with diagonals $\overline{A C}$ and $\overline{B D}$ intersecting at E (Given). $\overline{A D} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent). $\angle A E D \cong \angle C E B$ (Vertical angles are congruent). $\overline{B C} \| \overline{D A}$ (Definition of parallelogram). $\angle D B C \cong \angle B D A$ (Alternate interior angles are congruent). $\triangle A E D \cong \triangle C E B$ (AAS). 180° rotation of $\triangle A E D$ around point E.

REF: 061533geo
9 ANS:
Quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, diagonal $\overline{A C}$ intersects $\overline{E F}$ at G, and $\overline{D E} \cong \overline{B F}$ (given); $A B C D$ is a parallelogram (a quadrilateral with a pair of opposite sides \| is a parallelogram); $\overline{A D} \cong \overline{C B}$ (opposite side of a parallelogram are congruent); $\overline{A E} \cong \overline{C F}$ (subtraction postulate); $\overline{A D} \| \overline{C B}$ (opposite side of a parallelogram are parallel); $\angle E A G \cong \angle F C G$ (if parallel sides are cut by a transversal, the alternate interior angles are congruent); $\angle A G E \cong \angle C G F$ (vertical angles); $\triangle A E G \cong \triangle C F G$ (AAS); $\overline{E G} \cong \overline{F G}$ (CPCTC): G is the midpoint of $\overline{E F}$ (since G divides $\overline{E F}$ into two equal parts, G is the midpoint of $\overline{E F}$).

REF: 062335geo
10 ANS:
Rectangle $A B C D$ with points E and F on side $\overline{A B}$, segments $C E$ and $D F$ intersect at G, and $\angle A D G \cong \angle B C E$ are given. $\overline{A D} \cong \overline{B C}$ because opposite sides of a rectangle are congruent. $\angle A$ and $\angle B$ are right angles and congruent because all angles of a rectangle are right and congruent. $\triangle A D F \cong \triangle B C E$ by ASA. $\overline{A F} \cong \overline{B E}$ per CPCTC. $\overline{E F} \cong \overline{F E}$ under the Reflexive Property. $\overline{A F}-\overline{E F} \cong \overline{B E}-\overline{F E}$ using the Subtraction Property of Segments. $\overline{A E} \cong \overline{B F}$ because of the Definition of Segments.

REF: 011338ge

11 ANS:

Square $A B C D ; E$ and F are points on $\overline{B C}$ such that $\overline{B E} \cong \overline{F C} ; \overline{A F}$ and $\overline{D E}$ drawn (Given). $\overline{A B} \cong \overline{C D}$ (All sides of a square are congruent). $\angle A B F \cong \angle D C E$ (All angles of a square are equiangular). $\overline{E F} \cong \overline{F E}$ (Reflexive property). $\overline{B E}+\overline{E F} \cong \overline{F C}+\overline{F E}$ (Additive property of line segments). $\overline{B F} \cong \overline{C E}$ (Angle addition). $\triangle A B F \cong \triangle D C E(S A S) . \overline{A F} \cong \overline{D E}$ (СРСТС).

REF: 061538ge
12 ANS:
Parallelogram $D E F G, K$ and H are points on $\overrightarrow{D E}$ such that $\angle D G K \cong \angle E F H$ and $\overline{G K}$ and $\overline{F H}$ are drawn (given). $\overline{D G} \cong \overline{E F}$ (opposite sides of a parallelogram are congruent). $\overline{D G} \| \overline{E F}$ (opposite sides of a parallelogram are parallel). $\angle D \cong \angle F E H$ (corresponding angles formed by parallel lines and a transversal are congruent).
$\triangle D G K \cong \triangle E F H(\mathrm{ASA}) . \overline{D K} \cong \overline{E H}(\mathrm{CPCTC})$.

REF: 081538ge
13 ANS:
Quadrilateral $A B C D, \overline{A B} \cong \overline{C D}, \overline{A B} \| \overline{C D}$, and $\overline{B F}$ and $\overline{D E}$ are perpendicular to diagonal $\overline{A C}$ at points F and E (given). $\angle A E D$ and $\angle C F B$ are right angles (perpendicular lines form right angles). $\angle A E D \cong \angle C F B$ (All right angles are congruent). $A B C D$ is a parallelogram (A quadrilateral with one pair of sides congruent and parallel is a parallelogram). $\overline{A D} \| \overline{B C}$ (Opposite sides of a parallelogram are parallel). $\angle D A E \cong \angle B C F$ (Parallel lines cut by a transversal form congruent alternate interior angles). $\overline{D A} \cong \overline{B C}$ (Opposite sides of a parallelogram are congruent). $\triangle A D E \cong \triangle C B F(\mathrm{AAS}) . \overline{A E} \cong \overline{C F}(\mathrm{CPCTC})$.

REF: 011735geo
14 ANS:
Quadrilateral $A B C D$ with diagonal $\overline{A C}$, segments $G H$ and $E F, \overline{A E} \cong \overline{C G}, \overline{B E} \cong \overline{D G}, \overline{A H} \cong \overline{C F}$, and $\overline{A D} \cong \overline{C B}$ (given); $\overline{H F} \cong \overline{H F}, \overline{A C} \cong \overline{A C}$ (reflexive property); $\overline{A H}+\overline{H F} \cong \overline{C F}+\overline{H F}, \overline{A E}+\overline{B E} \cong \overline{C G}+\overline{D G}$ (segment

$$
\overline{A F} \cong \overline{C H} \quad \overline{A B} \cong \overline{C D}
$$

addition) $\triangle A B C \cong \triangle C D A(\mathrm{SSS}) ; \angle E A F \cong \angle G C H(\mathrm{CPCTC}) ; \triangle A E F \cong \triangle C G H(\mathrm{SAS}) ; \overline{E F} \cong \overline{G H}(\mathrm{CPCTC})$.
REF: 011935geo

15 ANS:
In quadrilateral $A B C D, \overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}$, segments $C E$ and $A F$ are drawn to diagonal $\overline{B D}$ such that $\overline{B E} \cong \overline{D F}$ (Given); $\angle A B F \cong \angle C D E$ (Parallel lines cut by a transversal form congruent interior angles); $\overline{E F} \cong \overline{F E}$ (Reflexive); $\overline{B E}+\overline{E F} \cong \overline{D F}+\overline{F E}$ (Addition); $\triangle A F B \cong \triangle C E D$ (SAS); $\overline{C E} \cong \overline{A F}(C P C T C)$.

$$
\overline{B F} \cong \overline{D E}
$$

REF: 012434geo
16
Because $P R O E$ is a rhombus, $\overline{P E} \cong \overline{O E} . \angle S E P \cong \angle V E O$ are congruent vertical angles. $\angle E P R \cong \angle E O R$ because opposite angles of a rhombus are congruent. $\angle S P E \cong \angle V O E$ because of the Angle Subtraction

Theorem. $\triangle S E P \cong \triangle V E O$ because of ASA. $\overline{S E} \cong \overline{E V}$ because of CPCTC.

REF: 010934b
17
ANS:
Quadrilateral $A B C D, E$ and F are points on $\overline{B C}$ and $\overline{A D}$, respectively, and $\overline{B G D}$ and $\overline{E G F}$ are drawn such that $\angle A B G \cong \angle C D G, \overline{A B} \cong \overline{C D}$, and $\overline{C E} \cong \overline{A F}$ (given); $\overline{B D} \cong \overline{B D}$ (reflexive); $\triangle A B D \cong \triangle C D B$ (SAS); $\overline{B C} \cong \overline{D A}$ (CPCTC); $\overline{B E}+\overline{C E} \cong \overline{A F}+\overline{D F}$ (segment addition); $\overline{B E} \cong \overline{D F}$ (segment subtraction); $\angle B G E \cong \angle D G F$ (vertical angles are congruent); $\angle C B D \cong \angle A D B$ (CPCTC); $\triangle E B G \cong \triangle F D G$ (AAS); $\overline{F G} \cong \overline{E G}$ (CPCTC).

REF: 012035geo
18 ANS:
Parallelogram $P Q R S, \overline{Q T} \perp \overline{P S}, \overline{S U} \perp \overline{Q R}$ (given); $\overline{Q U R} \cong \overline{P T S}$ (opposite sides of a parallelogram are parallel; Quadrilateral QUST is a rectangle (quadrilateral with parallel opposite sides and opposite right angles is a rectangle); $\overline{S U} \cong \overline{Q T}$ (opposite sides of a rectangle are congruent); $\overline{R S} \cong \overline{P Q}$ (opposite sides of a parallelogram are congruent); $\angle R U S$ and $\angle P T Q$ are right angles (the supplement of a right angle is a right angle),
$\triangle R S U \cong \triangle P Q T(\mathrm{HL}) ; \overline{P T} \cong \overline{R U}$ (CPCTC)
REF: 062233geo
19 ANS:
Quadrilateral MATH, $\overline{H M} \cong \overline{A T}, \overline{H T} \cong \overline{A M}, \overline{H E} \perp \overline{M E A}$, and $\overline{H A} \perp \overline{A T}$ (given); $\angle H E A$ and $\angle T A H$ are right angles (perpendicular lines form right angles); $\angle H E A \cong \angle T A H$ (all right angles are congruent); MATH is a parallelogram (a quadrilateral with two pairs of congruent opposite sides is a parallelogram); $\overline{M A} \| \overline{T H}$ (opposite sides of a parallelogram are parallel); $\angle T H A \cong \angle E A H$ (alternate interior angles of parallel lines and a transversal are congruent); $\triangle H E A \sim \triangle T A H$ (AA); $\frac{H A}{T H}=\frac{H E}{T A}$ (corresponding sides of similar triangles are in proportion);
$T A \bullet H A=H E \bullet T H$ (product of means equals product of extremes).
REF: 061935geo

ANS:

1) Quadrilateral $A B C D, \overline{A C}$ and $\overline{E F}$ intersect at $H, \overline{E F} \| \overline{A D}$, $\overline{E F} \| \overline{B C}$, and $\overline{A D} \cong \overline{B C}$ (Given); 2) $\angle E H A \cong \angle F H C$ (Vertical angles are congruent); 3) $\overline{A D} \| \overline{B C}$ (Transitive property of parallel lines); 4) $A B C D$ is a parallelogram (Quadrilateral with a pair of sides both parallel and congruent); 5) $\overline{A B} \| \overline{C D}$ (Opposite sides of a parallelogram); 6) $\angle A E H \cong \angle C F H$ (Alternate interior angles formed by parallel lines and a transversal); 7) $\triangle A E H \sim \triangle C F H$ (AA); 8) $\frac{E H}{F H}=\frac{A H}{C H}$ (Corresponding sides of similar triangles are proportional); 8) $(E H)(C H)=(F H)(A H)$ (Product of means equals product of extremes).

REF: 082235geo
21 ANS:
Parallelogram $A B C D, \overline{B E} \perp \overline{C E D}, \overline{D F} \perp \overline{B F C}, \overline{C E} \cong \overline{C F}$ (given). $\angle B E C \cong \angle D F C$ (perpendicular lines form right angles, which are congruent). $\angle F C D \cong \angle B C E$ (reflexive property). $\triangle B E C \cong \triangle D F C$ (ASA). $\overline{B C} \cong \overline{C D}$ (CPCTC). $A B C D$ is a rhombus (a parallelogram with consecutive congruent sides is a rhombus).

REF: 081535geo
22 ANS:
Isosceles trapezoid $A B C D, \angle C D E \cong \angle D C E, \overline{A E} \perp \overline{D E}$, and $\overline{B E} \perp \overline{C E}$ (given); $\overline{A D} \cong \overline{B C}$ (congruent legs of isosceles trapezoid); $\angle D E A$ and $\angle C E B$ are right angles (perpendicular lines form right angles); $\angle D E A \cong \angle C E B$ (all right angles are congruent); $\angle C D A \cong \angle D C B$ (base angles of an isosceles trapezoid are congruent); $\angle C D A-\angle C D E \cong \angle D C B-\angle D C E$ (subtraction postulate); $\triangle A D E \cong \triangle B C E$ (AAS); $\overline{E A} \cong \overline{E B}$ (CPCTC);

$$
\angle E D A \cong \angle E C B
$$

$\triangle A E B$ is an isosceles triangle (an isosceles triangle has two congruent sides).
REF: 081735geo
23 ANS:
$\overline{B D} \cong \overline{D B}$ (Reflexive Property); $\triangle A B D \cong \triangle C D B(\mathrm{SSS}) ; \angle B D C \cong \angle A B D$ (CPCTC).

REF: 061035ge

24 ANS:
Assume parallelogram $J M A P$ with diagonals intersecting at O. Opposite sides of a parallelogram are congruent, so $\overline{J M} \cong \overline{A P} . \angle J O M$ and $\angle A O P$ are congruent vertical angles. Because $J M A P$ is a parallelogram, $\overline{J M} \| \overline{A P}$ and since $\overline{J O A}$ is a transversal, $\angle M J O$ and $\angle P A O$ are alternate interior angles and congruent. Therefore $\triangle M J O \cong \triangle P A O$ by AAS. Corresponding parts of congruent triangles are congruent. Therefore $\overline{J O} \cong \overline{A O}$ and
$\overline{M O} \cong \overline{P O}$ and the diagonals of a parallelogram bisect each other.

REF: 010233b
25 ANS:
$\overline{A B} \cong \overline{C D}$, because opposite sides of a rectangle are congruent. $\overline{A M} \cong \overline{D M}$, because of the definition of midpoint. $\angle A$ and $\angle D$ are right angles because a rectangle has four right angles. $\angle A \cong \angle D$, because all right angles are
congruent. $\triangle A B M \cong \triangle D C M$, because of SAS. $\overline{B M} \cong \overline{C M}$ because of CPCTC.

REF: 080834b

