\qquad www.jmap.org

G.GMD.A.1: Area of Circles

1 If the circumference of a circle is 10π inches, what is the area, in square inches, of the circle?

1) 10π
2) 25π
3) 50π
4) 100π

2 The circumference of a circle measures 22π units. Find the number of square units in the area of the circle. Express your answer in terms of π.

3 A dog is tied with a rope to a stake in the ground. The length of the rope is 5 yards. What is the area, in square yards, in which the dog can roam?

1) 25π
2) 10π
3) 25
4) 20

4 A circular garden has a diameter of 12 feet. How many bags of topsoil must Linda buy to cover the garden if one bag covers an area of 3 square feet?

1) 13
2) 38
3) 40
4) 151

5 The circumference of a circular plot of land is increased by 10%. What is the best estimate of the total percentage that the area of the plot increased?

1) 10%
2) 21%
3) 25%
4) 31%

6 If an arc of 60° on circle A has the same length as an arc of 45° on circle B, what is the ratio of the area of circle B to the area of circle A ?

G.GMD.A.1: Area of Circles

Answer Section

1 ANS: 2

$$
\begin{array}{rlrl}
C & =\pi d & A & =\pi r^{2} \\
10 \pi & =\pi d \\
d & =10 & & =5^{2} \pi \\
r & =5 & & =25 \pi
\end{array}
$$

REF: 010012a
2 ANS:

$$
\begin{array}{rlrl}
C & =\pi d & A & =\pi r^{2} \\
121 \pi \cdot & 22 \pi & =\pi d & \\
d & =22 & & =11^{2} \pi \\
r & =11 & & =121 \pi
\end{array}
$$

REF: 010831a
3 ANS: 1

$$
A=\pi r^{2}=5^{2} \pi=25 \pi
$$

REF: 010617a
4 ANS: 2

$$
\begin{aligned}
A & =\pi r^{2} \quad \frac{36 \pi}{3} \approx 38 \\
& =6^{2} \pi . \\
& =36 \pi
\end{aligned}
$$

REF: 010717a
5 ANS: 2
If the circumference is increased by 10%, radius is also increased by $10 \% . \quad 1.1^{2}=1.21$
REF: 060106b

6 ANS:

$$
\begin{aligned}
s_{A} & =s_{B} \\
\theta_{A} r_{A} & =\theta_{B} r_{B}
\end{aligned}
$$

$\frac{16}{9} . \theta_{A}=60^{\circ}=\frac{\pi}{3} \quad \theta_{B}=45^{\circ}=\frac{\pi}{4} \cdot \frac{\pi}{3} r_{A}=\frac{\pi}{4} r_{B}$. If the ratio of the radii of circle A and B is $\frac{4}{3}$, the ratio of their

$$
\begin{aligned}
& \frac{r_{B}}{r_{A}}=\frac{\frac{\pi}{3}}{\frac{\pi}{4}} \\
& \frac{r_{B}}{r_{A}}=\frac{4}{3}
\end{aligned}
$$

areas is $\frac{16}{9}$.
REF: fall9932b

